
Cloud Computing
Patterns

Christoph Fehling Frank Leymann
Ralph Retter · Walter Schupeck
Peter Arbitter

Fundamentals to Design, Build,
and Manage Cloud Applications

Cloud Computing Patterns

.

Christoph Fehling • Frank Leymann •
Ralph Retter • Walter Schupeck •
Peter Arbitter

Cloud Computing
Patterns

Fundamentals to Design, Build,
and Manage Cloud Applications

Christoph Fehling
University of Stuttgart
Stuttgart
Germany

Frank Leymann
University of Stuttgart
Stuttgart
Germany

Ralph Retter
T-Systems International GmbH
Frankfurt
Germany

Walter Schupeck
Daimler AG
Stuttgart
Germany

The figures and icons are not subject to Springer’s copyright. Please contact the authors in
case of any questions or requests for permission.

Additional material to this book can be downloaded from http://extra.springer.com.

ISBN 978-3-7091-1567-1 ISBN 978-3-7091-1568-8 (eBook)
DOI 10.1007/978-3-7091-1568-8
Springer Wien Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013955000

Springer-Verlag Wien 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Peter Arbitter
Microsoft Deutschland GmbH
Unterschleißheim
Germany

http://extra.springer.com/

To Carina and my parents, Elisabeth and
Horst. Thank you for your love and support.

– Christoph

To the woman of my dreams!
– Frank

To Anni and Emil.
– Ralph

To my grandsons Leonardo and Max Viktor.
– Walter

To Annika, Paulina, Nils, and my lovely wife
Martina.

– Peter

.

Foreword by Gregor Hohpe

Over the recent years, you may have observed a strategy, dare I say “pattern,” for

software engineering books: take a popular buzzword and append the word

“patterns” to suggest that this particular title contains a substantial treatment of

the subject matter and is organized as a collection of easy to digest chapters, which

promise to provide solutions to recurring problems. For the pattern community, this

is a definite sign of success, and not one that is due to large marketing budgets but

rather many successful titles that deliver on this very promise. A recent search on

the “world’s largest bookstore” in the category “Books – Software Development”

yielded no less than 499 titles containing the word “patterns.” How does one pick

out the gems from such a vast collection of solutions to recurring problems?

First, good patterns books present a coherent pattern language, not just a

collection of patterns, in line with Christopher Alexander’s seminal title A Pattern
Language. Structuring a pile of patterns into a sequence of chapters is laudable but

does not make a language. Rather, a pattern language covers a specific domain and

usually offers multiple patterns for common design challenges and offers a clear

road map through the patterns.

Many influential software patterns books have also adopted a strong visual

language. I may be biased because Enterprise Integration Patterns was one of the
first titles to expand the notion of a pattern sketch to a visually coherent iconic

language, but because software architecture and specifically software patterns aim

to communicate complex design ideas in an easy-to-grasp way, a visual language is

a strong asset.

Almost all significant software patterns books are not simply the result of the

authors’ deep insight or determination but have been a true community effort.

For example, the Pattern Languages of Programming (PLoP) conference, which

has been running since 1994, has been the birthplace of many great patterns books.

While it is certainly not a requirement for pattern authors to workshop their papers

at PLoP, the claim that patterns are harvested rather than invented points to

the importance of community participation. This also means that good patterns

books don’t usually pop out of nowhere but are the pinnacle of a lengthy process of

stepwise refinement based on community feedback.

vii

Last but not least, most successful patterns books strike a delicate balance

between academic rigor and real-world applications. The academic world brings

depth of thinking and a clear structure, while the industry contributes the required

validation and real-world examples.

If you are wondering why the foreword to Cloud Computing Patterns muses

about the pattern movement as a whole, I invite you to revisit after reading this title.

I hope you will agree that I was in fact describing the essential properties of cloud
computing patterns! I have not much left to say but congratulate the authors on the

successful delivery of a relevant, well-structured, and community-validated soft-

ware patterns title. Because I am sure I won’t have to convince you that cloud

computing is one of the most relevant software engineering topics of the last

decade.

– Gregor Hohpe, coauthor of Enterprise Integration Patterns (Hohpe, G., Woolf B.:

Enterprise Integration Patterns: Designing, Building, and Deploying Messaging

Solutions. Addison-Wesley. http://www.eaipatterns.com/ (2003)).

Gregor Hohpe

viii Foreword by Gregor Hohpe

http://www.eaipatterns.com/

Foreword by Robert Hanmer

The forecast for computing is full of clouds. The computer press and the public

media are abuzz with “cloud-this” and “cloud-that,” but what does it all mean?

In many industries, service providers are looking to the cloud to help simplify their

hardware management and increase their flexibility and adaptability to change and

to provide new and innovative services, but much of what’s written about clouds is

about the nuts and bolts and offerings of specific cloud providers. The big picture of

how to build useful and robust applications to support business needs on top of

clouds is missing. Specific case studies are useful, but they can be limiting because

they also are tied to specifics. What’s needed is a resource to understand the ins and

outs of clouds and how they can be used from a top-down perspective. This book is

that resource.

I first met the authors at the 2011 Pattern Languages of Programming Confer-

ence in Portland, OR, USA. They submitted a paper to the conference that was

about early work that ultimately led to this book. Because a paper about clouds was

timely, it was one of the most popular papers at the conference. Everyone wanted to

learn more about clouds, and all were intrigued by the range of cloud solutions

studied to understand the patterns.

Patterns in the style of Christopher Alexander and the Design Patterns book [2]

(aka the Gang of Four - GOF patterns) are based on real-life experiences and proven

practices, not unproven theories. The successes, failures, and “aha’s” of real-life

solutions were captured in these patterns which were mined from projects across

several industries. The authors aren’t trying to sell clouds and they aren’t just

patting themselves on the back because they’ve built something nice with clouds.

They explain clouds based on what they’ve seen work in practice. The topics range

from the basics of on-demand self-service, broad network access, pay per use, and

rapid elasticity to complex topics like structuring multi-tier applications and how to

best handle issues like fault tolerance and performance.

Patterns explain not just what a cloud is or what you must do to effectively use a

cloud but also explain the trade-offs involved in using the cloud. The patterns tie the

cloud definitions back to the NIST Definitions of Cloud Computing [3] to thor-

oughly cover the topic. I agree with the authors that the pattern form is a good way

ix

to explain clouds, because patterns explain the design decisions and trade-offs you

must be aware of to build an effective cloud solution. The authors’ experiences help

you to know why things are the way they are as well as highlight how to work

around or benefit from that rationale.

You’ll find seven chapters in this book. Each chapter contains many patterns,

which describe a solution to a problem with an explanation of why that solution is

the right one. The chapters build from the basic fundamentals of the NIST definition

of a cloud all the way to cloud application shapes and sizes. In between, the authors

cover the basics of the different kinds of cloud offerings that you’ll find and the

basics of designing your solution’s cloud architecture and how to manage your

cloud. The last chapter talks about problems and pitfalls to avoid, for example, the

mismatch between the requirements imposed from the bottom up by the cloud

providers and the requirements pressing downward from the business analysts.

I especially like the author’s treatment of non-functional requirements. They

don’t ignore the issue of fault tolerance and robustness which would give you a

view of only the sunniest days ahead. This book points out that the rapid elasticity

of the cloud is not a guarantee of high reliability by itself but that further design

principles like elasticity and resiliency management are needed to ensure that the

application achieves the required level of reliability and availability.

I think that this book will help us all better utilize the cloud. And it’s a good

example of using patterns to explain a complex topic. The scope of computing-

related patterns is expanded from the range of technical domains like fault-tolerant

software and small memory systems to enterprise applications and then all the way

towards structuring complete business processes and environments like we see here

with cloud computing.

Cloud-this and cloud-that are explained in this book, which will help you prepare

for whatever the cloudy future of computing delivers.

– Robert S. Hanmer, author of Patterns for Fault Tolerant Software (Hanmer, R.:

Patterns for Fault Tolerant Software. Wiley, Chichester (2007)).

Robert Hanmer

x Foreword by Robert Hanmer

Preface

Which is the right cloud computing provider for my company?
How do I use the cloud computing products of a certain provider and how do
they compare to the products I already have in place? We use an infrastruc-
ture as a service platform already. What is different now?
How does cloud computing impact existing applications if they are moved
to the cloud?
How can I use cloud computing to reduce provisioning and setup times, so my
users can access servers more quickly?

During the past years of our collaborative research and consulting on cloud

computing, we often encountered these questions or very similar ones. Often, these

questions were driven by the need to rapidly produce results in big enterprise cloud

initiatives that were founded with the ambitious goals to reduce the cost of

IT tremendously and make provisioning of IT resources faster. We also encoun-

tered a general trend that cloud computing initiatives are often driven bottom-up,
starting with infrastructure automation activities. These initiatives, therefore, tend

to focus on the IT infrastructure and how to change its setup, deployment, and

management and leave application architecture standards for the enterprise

untouched. Results are company-internal infrastructure-as-a-service offerings

that can provision virtual servers in a fast and efficient manner via a self-service

portal. In this book, we describe how cloud computing changed IT infrastructure

provisioning and management as well, but mainly we focus on the following

questions:

How does cloud computing change the architecture of applications using it
efficiently? How can I use cloud infrastructure and platform offerings to
efficiently and rapidly design, build, and manage applications to support the
changing needs of my business?

Many products found in the cloud computing market display similar functional-

ity that customers may use to build their cloud applications. The discussions of

IT architects and developers are often hindered by different product names,

xi

provider-specific terminologies, the different distributions of common functionality

among products, as well as the fact that some products are merely cloud-washed,
and thus their name is extended with the term “cloud” to make them more

attractive. In our research, we, therefore, analyzed cloud products as well

as applications built using different cloud vendors and cloud computing

technologies. The goal of this analysis has been to extract common behavior

and common components of cloud products as well as the common architecture

principles involved to build cloud applications. The result is the book you hold in

your hands.

The reason for abstracting from existing cloud providers and cloud applications

is to capture provider-independent and sustainable knowledge abstracted from

concrete products. This abstract description covers how to build cloud applications,

how different cloud products behave, and when to choose a particular form of a

cloud offering given a concrete usage scenario.

What You Will Learn and What This Book Is About
and Not About

In this book, we build upon our experiences and approach cloud computing

principles with a top-down mind-set. The goal of this book is not to show you the

benefits of cloud infrastructure automation technology over traditional data centers

but to show you how cloud principles can be supported on the business and

application layers. This book should give you nuggets of advice in the form of

patterns that allow you to better understand how you can support cloud properties

on the application level and how to select appropriate cloud infrastructure and

platform offerings to make your life easier. Furthermore, this book gives IT

architects and developers a common vocabulary when discussing about cloud

products and architectures of custom cloud applications without focusing on a

concrete cloud provider.

During our consulting and research experiences, we often missed the abstraction

of cloud definitions from concrete provider offerings and vendor products. Thus, we

chose to use a pattern-based approach to describe cloud offerings vendor neutrally

in our technical report (Fehling, C., Leymann, F., Mietzner, R., Schupeck, W.:

A collection of patterns for cloud types, cloud service models, and cloud-based

application architectures. Technical report, University of Stuttgart) in 2011. As

this approach proved very popular wherever we presented and discussed it,

we decided to revise and extend this approach and the resulting pattern catalogue

into what you will find in this book. In order to not lose track with reality, we

describe the essential properties of a pattern and then add concrete providers and

vendor offerings where we are aware of them in “known uses” sections of the

pattern. These sections are by no means exhaustive; they should give you an initial

idea on providers and vendors offering a product that exhibits the properties

described in the pattern.

xii Preface

If you take this book as a catalogue of patterns that will help you to design, build,

and manage cloud-native applications as well as select suitable cloud infrastructure
and platform offerings, it will provide you with the most value. We wish you as

much motivation and satisfaction reading about and applying the patterns in the

book as we had collecting and presenting them at various conferences and events.

For further information, please also refer to:

http://www.cloudcomputingpatterns.org Christoph Fehling

Germany Frank Leymann

Ralph Retter

Walter Schupeck

Peter Arbitter

Preface xiii

http://www.cloudcomputingpatterns.org/

.

Trademarks

The use of general descriptive names, registered names, trademarks, service marks,

etc. in this publication does not imply, even in the absence of a specific statement,

that such names are exempt from the relevant protective laws and regulations and,

therefore, free for general use. While the advice and information in this book are

believed to be true and accurate at the date of publication, neither the authors nor

the editors nor the publisher can accept any legal responsibility for any errors or

omissions that may be made. The publisher makes no warranty, expressed or

implied, with respect to the material contained herein.

The authors have tried to identify all trademarks mentioned in this book;

however, some may have been missed. Thus, all other names mentioned in this

book may be trademarks or registered trademarks of other companies. The authors

acknowledge all of these that have not been included in the following list. The

following trademarks or registered trademarks are the property of the following

organizations:

MongoDB is Registered Trademark of 10gen, Inc.

Acronis is Registered Trademark of Acronis International GmbH.

Akamai is Trademark of Akamai Technologies.

Amazon CloudFront, Amazon CloudWatch, Amazon EC2, Amazon Elastic

Beanstalk, Amazon Elastic Compute Cloud, Amazon RDS, Amazon Relational

Database, Amazon S3, Amazon Simple Queue Service, Amazon Simple Storage

Service, Amazon SimpleDB, Amazon SQS, AmazonWeb Services, AWS, AWS

Import/Export, CloudFront, EC2, SimpleDB, SQS are Trademarks or Registered

Trademarks of Amazon Web Services LLC.

OS X is Registered Trademark of Apple Inc.

Xen is Registered Trademark of Citrix Systems, Inc.

SFPark is Registered Trademark of City and County of San Francisco.

CloudBees is Registered Trademark of CloudBees Inc.

CloudFlare is Registered Trademark of CloudFlare Inc.

Crashplan is Trademark of Code 42 Software.

Cordys is Trademark of Cordys B.V.

DMTF is Trademark of Distributed Management Task Force, Inc.

xv

Dropbox is Trademark or Registered Trademark of Dropbox Inc.

Gladinet is Trademark or Registered Trademark of Gladinet Inc.

Google App Engine and Google Web Toolkit are Trademarks of Google Inc.

DB2, IBM SmartCloud, MQSeries, System Z, Websphere are Trademarks or

Registered Trademarks of International Business Machines Corporation (IBM).

IEEE is Trademark of IEEE.

Jclouds is Trademark of Jclouds, Inc.

Linux is Registered Trademark of Linus Torvalds.

Hyper-V, Office 365, SQL Azure, SQL Server, Windows, Windows Azure,

Active Server Pages (ASP.net), Microsoft are Trademarks or Registered

Trademarks of Microsoft Corporation.

Metasonic is Trademark or Registered Trademark of Metasonic AG.

NOAA is Registered Trademark of National Oceanic and Atmospheric

Administration.

OASIS is Trademark of the OASIS consortium.

OpenNebula is Trademark of OpenNebula Project.

OpenStack is Registered Trademark of OpenStack Foundation.

Java, MySQL, Oracle, VirtualBox are Trademarks or Registered Trademarks of

Oracle Corporation.

Python is Registered Trademark of Python Software Foundation (PSF).

Rackspace is Registered Trademark of Rackspace US, Inc.

JBoss is Registered Trademark of Red Hat, Inc.

RightScale is Registered Trademark of RightScale, Inc.

RunMyProcess is Trademark of RunMyProcess SAS.

Force is Registered Trademark of salesforce.com.

Salesforce is Registered Trademark of salesforce.com.

SAP is Registered Trademark of SAP AG.

Scalr is Registered Trademark of Scalr Inc.

Storsimple is Trademark or Registered Trademark of Storsimple Inc.

Apache CouchDB, Apache, Apache ActiveMQ, Apache Camel, Apache

CouchDB, Apache Hadoop, Apache Libcloud, Apache Tomcat, Libcloud,

Apache Cassandra, Apache ODE are Trademarks or Registered Trademarks of

The Apache Software Foundation.

PHP is Registered Trademark of The PHP Group.

CloudFoundry, vCenter, vCenter Converter, Vmware are Trademarks or

Registered Trademarks of VMware, Inc.

WSO2 is Registered Trademark of WSO2, Inc.

xvi Trademarks

Acknowledgments

This book would not have been possible without the support of many persons with

whom we discussed architectural styles, the individual cloud computing patterns,

and cloud computing in general. Even though these discussions may not have been

related to the writing of this book directly, they were essential to our understanding

of cloud computing, architectural patterns, their creation, and their use.

For a first feedback to our research results, we would like to thank all participants

of the writers’ workshop held at the 2011 Conference on Pattern Languages of

Programs (PLoP). Ernst Oberortner provided excellent feedback on our first

patterns and Ralph E. Johnson was a great workshop leader and teacher. Their

feedback helped us to present the first book draft at the 2012 Chili Conference on

Pattern Languages of Programs (ChiliPLoP), where the book was discussed in

detail. Especially, we would like to thank Richard P. Gabriel, Joseph W. Yoder,

and Anthony Kwiatkowski for the detailed discussions. For continuous reviews of

this book during its writing and significant help, we would also like to thank

Olaf Zimmermann

Robert Hanmer

This book was not only influenced by persons who helped us write and improve

it but also by our colleagues and friends with whom we enjoyed doing research in

the area of cloud computing. We would like to thank David Schumm, Daniel

Schleicher, Oliver Kopp, Tammo van Lessen, Tolga Dalman, Thilo Ewald, and

Jochen Rütschlin for the time we worked together. Finally, this book was not only

influenced by our work but also by our personal life. We would like to thank our

families and friends for supporting us during this time and patiently enduring

“book-writing moods,” especially Carina Traut, Sven Tschersich, and Anni Retter

as well as little Emil.

xvii

.

Contents

1 Introduction . 1

1.1 Essential Cloud Computing Properties . 3

1.2 Essential Cloud Application Properties . 5

1.3 Use of Patterns for Cloud Computing . 7

1.4 Pattern Format Used in This Book . 9

1.5 Overview of This Book . 11

1.6 How to Read This Book. 13

2 Cloud Computing Fundamentals . 21

2.1 Overview of Fundamental Cloud Computing Patterns 22

2.2 Application Workloads . 23

2.2.1 Static Workload . 26

2.2.2 Periodic Workload . 29

2.2.3 Once-in-a-Lifetime Workload . 33

2.2.4 Unpredictable Workload . 36

2.2.5 Continuously Changing Workload 40

2.3 Cloud Service Models . 42

2.3.1 Infrastructure as a Service (IaaS) 45

2.3.2 Platform as a Service (PaaS) . 49

2.3.3 Software as a Service (SaaS) . 55

2.4 Cloud Deployment Models . 60

2.4.1 Public Cloud . 62

2.4.2 Private Cloud . 66

2.4.3 Community Cloud . 71

2.4.4 Hybrid Cloud . 75

3 Cloud Offering Patterns . 79

3.1 Overview of Cloud Offering Patterns . 80

3.2 Impact of Cloud Computing Properties on Offering Behavior 81

3.3 Cloud Environments . 86

3.3.1 Elastic Infrastructure . 87

3.3.2 Elastic Platform . 91

3.3.3 Node-Based Availability . 95

3.3.4 Environment-Based Availability 98

xix

3.4 Processing Offerings . 100

3.4.1 Hypervisor . 101

3.4.2 Execution Environment . 104

3.4.3 Map Reduce . 106

3.5 Storage Offerings . 109

3.5.1 Block Storage . 110

3.5.2 Blob Storage . 112

3.5.3 Relational Database . 115

3.5.4 Key-Value Storage . 119

3.5.5 Strict Consistency . 123

3.5.6 Eventual Consistency . 126

3.6 Communication Offerings . 131

3.6.1 Virtual Networking . 132

3.6.2 Message-Oriented Middleware . 136

3.6.3 Exactly-Once Delivery . 141

3.6.4 At-Least-Once Delivery . 144

3.6.5 Transaction-Based Delivery . 146

3.6.6 Timeout-Based Delivery . 149

4 Cloud Application Architecture Patterns . 151

4.1 Overview of Cloud Application Architecture Patterns 152

4.2 Fundamental Cloud Architectures . 155

4.2.1 Loose Coupling . 156

4.2.2 Distributed Application . 160

4.3 Cloud Application Components . 166

4.3.1 Stateful Component . 168

4.3.2 Stateless Component . 171

4.3.3 User Interface Component . 175

4.3.4 Processing Component . 180

4.3.5 Batch Processing Component . 185

4.3.6 Data Access Component . 188

4.3.7 Data Abstractor . 194

4.3.8 Idempotent Processor . 197

4.3.9 Transaction-Based Processor . 201

4.3.10 Timeout-Based Message Processor 204

4.3.11 Multi-Component Image . 206

4.4 Multi-Tenancy . 208

4.4.1 Shared Component . 210

4.4.2 Tenant-Isolated Component . 214

4.4.3 Dedicated Component . 218

4.5 Cloud Integration . 221

4.5.1 Restricted Data Access Component 222

4.5.2 Message Mover . 225

4.5.3 Application Component Proxy . 228

xx Contents

4.5.4 Compliant Data Replication . 231

4.5.5 Integration Provider . 234

5 Cloud Application Management Patterns . 239

5.1 Overview of Application Management Patterns 240

5.2 Management Components . 242

5.2.1 Provider Adapter . 243

5.2.2 Managed Configuration . 247

5.2.3 Elasticity Manager . 250

5.2.4 Elastic Load Balancer . 254

5.2.5 Elastic Queue . 257

5.2.6 Watchdog . 260

5.3 Management Processes . 264

5.3.1 Elasticity Management Process . 267

5.3.2 Feature Flag Management Process 271

5.3.3 Update Transition Process . 275

5.3.4 Standby Pooling Process . 279

5.3.5 Resiliency Management Process 283

6 Composite Cloud Application Patterns . 287

6.1 Overview of Cloud Application Patterns 288

6.2 Native Cloud Applications . 289

6.2.1 Two-Tier Cloud Application . 290

6.2.2 Three-Tier Cloud Application . 294

6.2.3 Content Distribution Network . 300

6.3 Hybrid Cloud Applications . 303

6.3.1 Hybrid User Interface . 304

6.3.2 Hybrid Processing . 308

6.3.3 Hybrid Data . 311

6.3.4 Hybrid Backup . 314

6.3.5 Hybrid Backend . 317

6.3.6 Hybrid Application Functions . 320

6.3.7 Hybrid Multimedia Web Application 323

6.3.8 Hybrid Development Environment 326

7 Impact of Cloud Computing Properties . 331

7.1 Cloud Computing Properties on Levels of the Application Stack . . . 332

7.1.1 Downwards-Propagation of Requirements 334

7.1.2 Upwards-Propagation of Properties 335

7.1.3 Meet-in-the-Middle for Cloud Properties

and Requirements . 335

7.2 Impact of Core Cloud Properties . 336

7.2.1 Pay-Per-Use . 336

7.2.2 Rapid Elasticity . 337

7.2.3 Homogenization . 340

7.2.4 Resource Sharing/Multi-Tenancy 342

Contents xxi

7.3 Impact of Other Common Cloud Offering Properties 345

7.3.1 Environment-Based Availability 346

7.3.2 Eventual Consistency . 349

7.3.3 At-Least-Once Messaging . 351

References . 353

Index . 363

xxii Contents

List of Figures

Fig. 1.1 Mapping of chapters to a cloud reference application 12

Fig. 2.1 Pattern map of cloud computing fundamentals . 21

Fig. 2.2 Exemplary resource provisioning . 24

Fig. 2.3 Exemplary static workload . 27

Fig. 2.4 Exemplary periodic workload . 30

Fig. 2.5 Exemplary once-in-a-lifetime workload . 34

Fig. 2.6 Exemplary unpredictable workload . 37

Fig. 2.7 Exemplary continuously changing workload . 41

Fig. 2.8 Application stack and associated cloud service models 43

Fig. 2.9 Infrastructure as a service in the application stack 46

Fig. 2.10 Platform as a service in the application stack . 50

Fig. 2.11 Software as a service in the application stack . 56

Fig. 2.12 Level of elasticity and pay-per-use of different cloud deployment

types . 61

Fig. 2.13 Public cloud . 63

Fig. 2.14 Private cloud, outsourced private cloud, and virtual private

cloud . 67

Fig. 2.15 Community cloud, outsourced community cloud, and virtual

community cloud . 72

Fig. 2.16 Hybrid cloud in the cloud scope . 76

Fig. 3.1 Pattern map of cloud offerings . 79

Fig. 3.2 Eventual consistency scenario . 84

Fig. 3.3 Components of an elastic infrastructure . 88

Fig. 3.4 Components of an elastic platform . 92

Fig. 3.5 Exemplary node-based availability . 96

Fig. 3.6 Exemplary environment-based availability assurances 99

Fig. 3.7 Hypervisor types using virtualization and para-virtualization 102

Fig. 3.8 Execution environment in an application stack . 105

Fig. 3.9 Elastic map reduce using key-value storage . 107

Fig. 3.10 Images of a block storage being mapped to virtual drives 111

Fig. 3.11 Blob storage accessed via HTTP . 113

Fig. 3.12 Exemplary relational storage . 116

Fig. 3.13 Exemplary read operation on a key-value storage 120

Fig. 3.14 Exemplary strict consistent replicas . 124

xxiii

Fig. 3.15 Exemplary eventual consistent replicas . 127

Fig. 3.16 Self-service interface for configuration of virtual networking 133

Fig. 3.17 Exemplary VLAN setup . 134

Fig. 3.18 Firewall setup for an example application . 134

Fig. 3.19 VPN from a corporate network to an IaaS provider 135

Fig. 3.20 Message-oriented middleware and related patterns 137

Fig. 3.21 Message filter used to guarantee exactly-once delivery 142

Fig. 3.22 Communication between a sender and a receiver to ensure

at-least-once delivery . 145

Fig. 3.23 Operations of the transactional reception of a message 147

Fig. 3.24 Operations of timeout-based reception of a message 150

Fig. 4.1 Map of the cloud application architecture patterns 151

Fig. 4.2 Realization of loose coupling through an intermediary 158

Fig. 4.3 Exemplary decomposition into three tiers . 162

Fig. 4.4 Process-based decomposition . 162

Fig. 4.5 Pipes-and-filters-based decomposition . 162

Fig. 4.6 Stateful application components . 169

Fig. 4.7 Stateless application components . 172

Fig. 4.8 User interface components in a common setup . 176

Fig. 4.9 Integration of different portlets into a portal . 177

Fig. 4.10 Processing component in a standard setup . 181

Fig. 4.11 Exemplary pipes-and-filters video processing application 182

Fig. 4.12 Exemplary process-based video processing application 183

Fig. 4.13 Batch processing component in a standard setup 186

Fig. 4.14 Data access components integrating stateful components and

storage offerings residing in two clouds . 189

Fig. 4.15 Data access component interface and data structure 191

Fig. 4.16 Exemplary data abstractions . 195

Fig. 4.17 Idempotent component for messaging (left) and storage

offerings (right) . 199

Fig. 4.18 Operations of the transactional processing of a message (left)
and data (right) . 202

Fig. 4.19 Operations of the timeout-based processing of a message 205

Fig. 4.20 Two application components managed as one multi-component

image . 207

Fig. 4.21 Clients accessing a shared component . 211

Fig. 4.22 Clients accessing a tenant-isolated component . 216

Fig. 4.23 Table-based tenant isolation (left) and row-based tenant

isolation (right) . 216

Fig. 4.24 Clients accessing dedicated components . 219

Fig. 4.25 A data access component and a restricted data access component

providing data to a secure and an insecure environment 223

Fig. 4.26 Message mover integrating queues of two environments 226

Fig. 4.27 Application component proxy bridging two environments 229

xxiv List of Figures

Fig. 4.28 Compliant data replication between a secure cloud and an

insecure cloud . 232

Fig. 4.29 Integration provider integrating two private environments 235

Fig. 5.1 Map of the cloud application management patterns 239

Fig. 5.2 Abstract management architecture . 241

Fig. 5.3 Exemplary provider adapter component accessed

synchronously . 244

Fig. 5.4 Exemplary provider adapter component accessed

asynchronously . 245

Fig. 5.5 Polling (left) and pushing (right) of managed configurations 248

Fig. 5.6 Elasticity manager interacting with an elastic platform or

elastic infrastructure . 251

Fig. 5.7 Elastic load balancer interacting with an elastic platform or

elastic infrastructure . 255

Fig. 5.8 Elastic queue interacting with an elastic platform or an elastic

infrastructure . 259

Fig. 5.9 Watchdog supervising application components hosted on IaaS

and PaaS . 261

Fig. 5.10 Elasticity management flow . 268

Fig. 5.11 Feature flags management process . 273

Fig. 5.12 Update transition process for application components accessed

through load balancers and queues . 277

Fig. 5.13 Decommissioning executed by the standby pooling process

and interacting components . 280

Fig. 5.14 Provisioning executed by the standby pooling process and

interacting components . 281

Fig. 5.15 Resiliency process handled by the watchdog . 285

Fig. 6.1 Map of composite patterns for cloud computing 287

Fig. 6.2 Exemplary architecture of a two-tier cloud application 291

Fig. 6.3 Exemplary architecture of a three-tier cloud application 295

Fig. 6.4 Content distribution from a storage offering to two cloud

environments . 301

Fig. 6.5 Hybrid user interface in an elastic cloud and a static

data center . 305

Fig. 6.6 Hybrid processing in a static data center and an elastic cloud 309

Fig. 6.7 Hybrid data residing in a static and an elastic environment 312

Fig. 6.8 Hybrid backup using an elastic cloud to archive data 315

Fig. 6.9 Hybrid backend using a static data center and an elastic cloud . . . 318

Fig. 6.10 Hybrid UI, processing, and data deployment . 321

Fig. 6.11 Hybrid multimedia web application residing in an elastic cloud

and a static data center . 324

Fig. 6.12 Hybrid development environment and its integration with a

production environment . 327

Fig. 7.1 Propagation of requirements in the application stack 333

List of Figures xxv

Fig. 7.2 Workloads and elasticity requirements . 337

Fig. 7.3 Elasticity on different levels of the stack . 338

Fig. 7.4 Resource sharing/multi-tenancy on different levels in the stack 343

Fig. 7.5 Mitigation of environment-based availability on higher levels

of the application stack . 346

All figures published with kind permission of # The Authors 2014. All Rights

Reserved.

xxvi List of Figures

Introduction 1

Cloud computing is the logical evolution of Information Technology (IT) in a

world that is becoming more and more based on the division of work. From small

family-owned stores to big corporations the trend to outsource IT is prevalent. Cloud

computing brings principles that are long established in other industries to the IT. Take

the transportation industry as an example. If you want to use a car you can get this

functionality in awide range of servicemodels. Fromyour own car that you buy and are

responsible for, to cars sourced from a company-internal pool, to a rental car from one

of the rent-a-car agencies, from car-sharing models, to taxis the functionality is

essentially the same – a car enabling fast self-paced driving from A to B. The

differentiating factor of these mobility providers is their business model to deliver

functionality and the level of guaranteed quality of service. Cloud computing brings a

new choice to the service models in which IT is delivered. Cloud computing is the IT

equivalent of the rent-a-car model. The promise of cloud computing is to consume IT

resources (be it infrastructure, middleware platforms, software, or whole business

processes) when you need them in the quantity you need them at a certain time. While

this IT delivery model is not new from a technical perspective, the fundamental

change is the business model that you only pay for IT resources when you actually
use them. Similar to the car industry this can be game-changing and can save you lots

of money, speed up your time-to-market, and make your business and IT more

flexible. In other cases, where you cannot embrace this business model fully, it can

be complicated and more expensive than just buying the respective IT resources and

maintaining them yourself.

Another evolution that cloud computing is often compared to is the industriali-

zation of electricity, when businesses started to rely on large centralized power

plants and distribution networks rather than generating their own electricity. Today,

such decentralized generation of electricity is mostly used for backup purposes.

However, what makes cloud computing very different from renting a car or the

consumption of electricity is data. As cloud computing stores data on the provider

All figures published with kind permission of # The Authors 2014. See list of figures.

C. Fehling et al., Cloud Computing Patterns,
DOI 10.1007/978-3-7091-1568-8_1, # Springer-Verlag Wien 2014

1

side, concerns regarding privacy, security, and trust in the provider are raised. This

property of cloud computing allows jet another analogy to a long established

business model: banks. Storing our data away from a private data center in an

intangible cloud environment is similar to trusting your money to banks. And

probably, the first banks faced similar trust issues and skepticism as cloud providers

do today. But this perception will likely shift or do you know anybody still storing

large amounts of cash in mattresses or dry walls?

We are not aiming at creating yet another cloud computing definition or a definition

of associated technologies in this book. Instead we focus on the basic properties of

cloud computing, help you understand them, and guide their use in your IT infrastruc-

ture and applications. Thus, this book gives you a toolbox that you can employ and

customize based on your role in the cloud business domain. It will help you solve a

wide range of tasks that we have come across in various consulting engagements,

while building cloud offerings, in research projects, while working on standards in the

cloud field, as well as during the usage of cloud offerings in various applications. We

make this toolbox available using the means of a pattern language interconnecting a
set of cloud computing patterns. A cloud pattern is a small human readable document

of a well-defined format describing a good solution to a cloud-related problem. We

researched and captured such patterns describing different types of clouds, the

offerings they provide, and how to build applicationswith them. Through the intercon-

nections between patterns, a reader is guided from pattern to pattern to find applicable

solutions to problemswhen using cloud computing.As this book is, therefore, not a list

of concrete cloud offerings and their properties, but rather a list of nuggets of advice on

how to cope with the generic properties of cloud offerings, we believe that a pattern

language is the right format as is leaves the reader a certain freedom about the order in

which to read the book (see Sect. 1.6 for some possible reading orders). We distilled

the essential patterns that you should be aware of in the following situations:

• Evaluation of cloud offerings.

• Building applications on top of cloud offerings.

• Building custom cloud offerings.

• Evaluation of application landscapes for cloud-readiness.
The goal of this book is that after reading it in full or in parts, that you are enabled to

acknowledge the benefits of cloud computing but also to decide when cloud principles

do not provide any benefits in a situation you may be in. After you have read this book

you will be able to compare cloud offerings on an architecture level and you will be

sure what their impact is on your applications and your application landscape. You will

be able to consider cloud-readiness in the architecture design of applications – thus,

you will have a very good idea what it means to build applications that embrace

cloud principles and make use of them extensively. You will also have the necessary

mental toolbox to build and architect cloud-native applications. Throughout the

book, you will find two kinds of text boxes with additional information:

Side Notes shortly summarize important information about the

current chapter that should be remembered. Think of them as the

nuggets of advice to take with you from reading this book.

2 1 Introduction

Further Reading text boxes are used to point to other books

and related work that describe a covered topic in greater

detail. Think of them as a starting point to find more
detailed information on subjects that we do not cover

completely.

In the remainder of this introduction, we will cover the essential cloud computing

properties, give an introduction to patterns and describe the used pattern format. We

further give an overview of the cloud computing patterns using a sample cloud

application and cover several user stories on how to read this book.

1.1 Essential Cloud Computing Properties

In the following, we consider IT resources that support a company’s data processing

needs. These resources can be, for example, a server, a middleware platform, or a

complete software application. A cloud offering provides such IT resources as a
Service accessible over a network and displays the essential cloud computing

properties described in this section. These offered IT resources experience a certain

workload that is the impact of user requests to a cloud offering resulting in processing

load, communication traffic, or data to be stored. In scope of clouds, we also use the

term cloud resource to refer to IT resources hosted in a cloud environment

Since the business model to offer IT resources over a network has been well

established, the boundaries between cloud computing and other computing

paradigms are often blurred. Especially, the large numbers of existing products,

which suddenly have the term “cloud” added to their name, sometimes called

“cloud washing” [6], lead to confusion. And there are many long-established

technical and non-technical concepts that have been integrated in cloud computing

offerings [3]. However, it is the combination of these concepts that makes cloud

computing special and introduces several new properties found in cloud services.

For the following discussions it is important to note that we explicitly talk about

properties of cloud offerings provided as a Service. As a result there are at least two
roles involved: The cloud provider offering the service and the cloud customer
consuming the service. Thus, the cloud customer buys a service with a well-defined

contract from the cloud provider. The customer and the provider can be different

legal entities or parts of the same legal entity, i.e., an IT department providing IT

resources to local business units. To understand the implications that the outsourcing

of cloud services has, the understanding of their fundamental properties is essential.

Among all attempts to define this set of cloud properties, the NIST Definition of

Cloud Computing [3] has been most accepted and will also be employed as a basic

definition of cloud computing in this book. The NIST definition introduces five

fundamental properties that characterize a cloud offering: on-demand self-service,

1.1 Essential Cloud Computing Properties 3

broad network access, measured service (pay-per-use), resource pooling and rapid
elasticity. These are described in more detail in the following:

On-demand self-service: customers may reserve and release IT resources

independently exactly as needed. Throughout the remainder of this book, we will

use the terms “provision” and “decommission” for these activities, respectively. This

functionality may be provided through graphical or command line user interfaces to

be used by humans or as application programming interfaces (API) to be used by

applications in an automated fashion.

Broad network access: IT resources are made available over a high-speed

network. The general availability of such powerful networks is essential for the

integration of distributed IT resources in applications, because data access times

become less dependent on the physical location where data is stored.

Measured service (pay-per-use): the use of IT resources for storage,

processing, or data exchange is measured to ensure transparency for both the

cloud customer and the cloud provider. Commonly, this metering is used to enable

pay-per-use pricing models, thus, customers of cloud offerings only pay for the

service when they use it and only for the intensity in which they use it. Long-term

upfront investments in IT resources are reduced and transformed to operational

expenses. Cloud computing is, therefore, said to enable the shift of capital

expenditures (CAPEX) in IT to operational expenditures (OPEX), which can be

increased or decreased more flexibly depending on the growth of a business.

The benefit of measured service and the enabled pay-per-use pricing models for

the customer is quite obvious as no more investments in non-used or under-utilized

IT resources is necessary. To make the business case for the provider, the provider

must deal with the fact that resources can be returned by customers when they do

not need them. However, these resources can then be assigned to other customers or

applications when they need it. As the measured service property often manifest in

pay-per-use billing, these terms can often be used interchangeably, even though the

fact that a service is measured does not impose any pricing model on the provider.

Resource pooling: to deal with the demand for pay-per-use, cloud providers

offer IT resources using a large IT resource pool that is shared by multiple

customers. To be able to assign resources of the resource pool dynamically to

customers, it is required that the resource pool supports elasticity, i.e., customers

can rapidly grow or shrink the share of the resource pool assigned to them. The

assignment of IT resources to customers can be done manually by the customer via

the self-service interface or programmatically through an application programming

interface (API). Also, the cloud provider can automatically detect underutilized IT

resources or increased demand of customers and assigns IT resources accordingly.

Depending on the cloud deployment model used (see Sect. 2.4), customers of a

cloud can be multiple companies but can also be various internal project teams or

departments of the same company. In this scope, a customer is often referred to as a

tenant that has multiple users working for it.

The sharing of a set of resources between multiple customers has a very important

side-effect on the cloud environment: homogenization of IT resources is enforced

as customers cannot use very specific resources any longer but have to rely on

4 1 Introduction

http://dx.doi.org/10.1007/978-3-7091-1568-8_2.4

commoditized resources offered by the provider. Therefore, the differentiating

factors of hardware and software platforms vanish, homogenizing the runtime envi-

ronment found in the cloud of one provider. This homogenization is very important

for the cloud provider as heterogeneity of an IT landscape increases IT management

complexity [7] and, thus, is a major cost driver for IT departments [8].

Rapid elasticity: multi-tenant or tenant-aware IT resource pools used to provide

cloud offerings enable providers to exploit economies of scale. Economies of scale

in the scope of cloud computing means that providers offer a (shared) cloud

offering to a very large number of customers to reduce the costs for individual

customers. By sharing IT resources between customers the utilization of provided

IT resources in consequence of customer accesses – we call this workload – can be

handled using all IT resources in the pool. The different workload requirements of

customers are, therefore, leveled since higher-demand of one customer may be

handled by resources that another customer does not require at that moment.

Through the size of their offerings, cloud providers may allow customers to

provision and decommission IT resources flexibly in very short time frames. This

enables customers to adjust the actual number of provisioned IT resources tightly

to the currently experienced workload of a business process, an application, or

platform. However, this capability, just as the ability to scale elastically, has to be

supported by hosted applications. In addition to being able to distribute workload

among independent resources, an elastic application has to be able to free resources
flexibly, if they become underutilized.

Individually, these cloud properties may be known already and are often available

in different well-established products and services, for example, server hosting

solutions or public Web applications. It is the combination of these concepts and

techniques in addition to a significant improvement of Internet connectivity and data

transfer speed that distinguishes cloud computing from existing products and

services and that justifies calling cloud computing a “new big thing”. When we

use the term cloud properties in the following chapters of this book we explicitly

refer to the above mentioned five fundamental cloud properties: broad network
access, on-demand self-service, measured service (pay-per-use), resource pooling
and rapid elasticity.

1.2 Essential Cloud Application Properties

With respect to the cloud computing properties covered in the previous section, a

number of application properties can be derived enabling a cloud-native application

to benefit from a cloud environment. These cloud-native applications are built on

top of IT resources provided by cloud offerings. Just like other cloud offerings, they

experience a certain workload due to user requests that have to be processed, result

in communication traffic, and generate data that has to be stored. Cloud-native

applications have to exploit the properties of cloud offerings to handle this workload

in an efficient manner, which is achieved by ensuring the following cloud application

1.2 Essential Cloud Application Properties 5

properties. The best practices captured in this book are, therefore, design guidelines

to ensure the following properties of IDEAL cloud-native applications:

Isolated state, Distribution, Elasticity, Automated management, Loose coupling
(to ease comprehensibility we do not use this order in the following definition).

Distribution: by nature, cloud environments are large, possibly globally

distributed environments that consist of many IT resources (see the resource

pooling cloud property). Therefore, cloud applications have to be decomposed

into separate application components that can be distributed among resources in

this environment.

Elasticity: cloud applications should by scaled out instead of being scaled up,
thus, to address increasing workload the number of resources assigned to a customer

or an application is increased, not the capabilities of individual resources. Therefore,

in a scaling-out approach, also called horizontal scaling the number of independent

IT resources, such as servers, is increased if an application requires more processing

power, storage etc. The application, therefore, has to be designed to run on multiple

independent resources. In contrast to horizontal scaling, vertical scaling (also called

scaling up) refers to the approach of increasing the performance of an application by

increasing the capabilities of the IT resources on which it runs without changing their

number. While a vertical scaling approach can also be used in the cloud, it is limited

by the capabilities of individual IT resources offered by a cloud provider.

In addition to being horizontally scalable, cloud applications also need to be

elastic. Scalability refers to the ability of the application to increase its performance

when additional IT resources are added and often does not consider the removal of

these resources. Elasticity specifically focusses on both the dynamic addition and

removal of IT resources and demands that the application can add and free IT

resources to adjust its performance quickly if the workload changes. This ability is

essential to exploit the pay-per-use cloud property.

Isolated state: a concept that is closely related to elasticity is to design large

portions of a cloud application to be stateless, thus, isolating state in small portions

of the application. The notion of statelessness commonly refers to session state –

the state of a client’s interaction handled by a Web application. We extend this

notion to also incorporate application state – the data handled by the application.

Session state and application state may severely impact a cloud applications ability

to be scaled out either through custom developed management functionality or

automatically by the cloud provider. An IT resource that does not hold application

state can be added and removed more easily as no state information has to be

synchronized to newly provisioned resources or extracted from removed ones.

Cloud providers, therefore, often restrict where application state may be handled

in automatically scaled applications.

Side Note: with the term stateless, we subsume the properties of an

applications component not to store session state or application
state. The stateful component (168) pattern and stateless component
(171) pattern discuss this notion of state in greater detail, how it

may be handled, and how management functionality discussed in

Chap. 5 is affected by it.

6 1 Introduction

http://dx.doi.org/10.1007/978-3-7091-1568-8_5

Automated management: due to the elasticity of a cloud application, resources
are constantly added and removed during runtime. These tasks should be automated

by monitoring system load and interacting with management interfaces of cloud

providers to provision or decommission resources. Many cloud providers do not

assure an availability of individual IT resources, such as particular virtual servers,

but only for the offering as a whole, i.e., the ability to start new virtual servers. This

behavior increases the need for automated management to ensure that a cloud

application is failure resistant.

Loose coupling: as the number of IT resources on which a cloud application relies

constantly changes, the dependencies between application components should be

minimized. This eases provisioning and decommissioning tasks and also reduces the

impact of failing application components. Loose coupling is a well-established

concept in distributed applications. This makes related technologies, such as Web

services comprising a Service Oriented Architecture (SOA) [9–11] and asynchronous

messaging [1] equally usable and relevant for cloud applications.

1.3 Use of Patterns for Cloud Computing

The concept of patterns used in this book originated from the area of real architecture.

Alexander [12, 13] gathered architectural knowledge and best practices regarding

building structures in a pattern format. This knowledge was obtained from years of

practical experience. A pattern according to Alexander is structured text that follows a

well-defined format and captures nuggets of advice on how to deal with recurring

problems in a specific domain. It advises the architect on how to create building

architectures, defines the important design decisions, and covers limitations to con-

sider. Patterns can be very generic documents, but may also include concrete

measurements and plans. Their application to a certain problem is, however, always

a manual task that is performed by the architect. Therefore, each application of a

pattern will result in a differently looking building, but all applications of the pattern

will share a common set of desired properties. In building architecture, pattern-based

descriptions of best practices and design decisions proved especially useful, because

many desirable properties of houses, public environments, cities, streets, etc. are not

formally measurable. They are perceived by humans and, thus, cannot be computed or

predicted in a formal way. Therefore, best practices and well-perceived architectural

styles capture a lot of implicit knowledge how people using and living in buildings

perceive their structure, functionality, and general feel. Especially, the indifferent

emotion that buildings trigger, such as awe, comfort, coziness, power, cleanness,

etc. are hard to measure or explain and are also referred to as the quality without a
name or the inner beauty of a building [12]. How certain objectives can be realized in

architecture is, thus, found only through practical experience, which is then captured

by patterns. For example, there are patterns describing how lighting in a room should

be realized so that people feel comfortable and positive. There are patterns describing

how eating tables should be sized so that people can move around the table freely, get

seated comfortably, find enough room for plates and food, while still being able to

1.3 Use of Patterns for Cloud Computing 7

communicate and talk during meals without feeling too distant from people seated

across the table. While the properties of the table are easy to enforce once concrete

distances and sizes are specified, they are extremely hard to determine theoretically or

by pure computation using a building’s blueprint. Therefore, architects capture their

knowledge gathered from existing buildings and feedback they received from users in

patterns describing well-perceived building design. In this scope, each pattern

describes one architectural solution for an architectural problem, for example, for

the above mentioned eating area. It does so in an abstract format that allows the

implementation in various ways. Architectural patterns, thus, capture the essential

properties required for the successful design of a certain building area or function

while leaving large degrees of freedom to architects. Multiple patterns are connected

and interrelated resulting in a pattern language. This concept of links between patterns
is used to point to related patterns. For example, an architect reviewing patterns

describing different roof types can be pointed to patterns describing different solutions

for windows in these roofs and may be advised that some window solutions, thus, the

patterns describing them cannot be combined with a certain roof pattern. For example,

a flat rooftop cannot be combined with windows that have to be mounted vertically.

Also, a pattern language uses these links to guide an architect through the design of

buildings, streets, cities, etc. by describing the order in which patterns have to be

considered. For example, the size of the ground on which a building is created may

limit the general architecture patterns that should be selected first. After this, the

number of floors can be considered, the above mentioned roofing style etc. [13].

In a similar way, the pattern-based approach has been used in IT architecture to

capture best practices how applications and systems of applications should be

designed. Examples are patterns for general application architectures [14], object

oriented programming [2], enterprise applications [15], message-based application

integration [1], or for fault-tolerant software [4]. Again, these patterns are abstract

and independent of used programming language or runtime infrastructure to form

timeless knowledge that can be applied in various IT environments. In the domain of

IT architecture, the gathered knowledge is not necessarily obtained from applica-

tion users. There are user interface design patterns [16] and some will be discussed

in this book as well, but the desirable properties in IT architecture are also

manageability, flexibility to make changes, and, especially, the cloud computing

properties and cloud application properties introduced in Sects. 1.1 and 1.2. The

properties of IT architecture become apparent over time while an application is

productively used, evolves to meet new requirements, has to cope with failures, or

has to be updated to newer versions. During this lifecycle of an application,

architects can, therefore, reflect on the IT architecture to determine whether it

was well designed to meet such challenges. These best practices obtained from

existing applications and documented knowledge of other IT architects has been

captured in this book to describe the IT domain of cloud computing applications. As

patterns are abstract solution blueprints they are ideal to document cloud-specific

properties of cloud offerings as well as good practices on how to deal with these

properties in a programming language-neutral and technology-neutral fashion.

Thus, the pattern format allows us to be very specific in sketching solutions and

8 1 Introduction

describing cloud properties while still being generic enough so that patterns remain

applicable across different cloud providers, different technologies, and different

products. This very specific, yet technology neutral understanding of the properties

of clouds and their impact is key to be able to make use of cloud offerings and to

develop applications on top of them.

In this book we, therefore, introduce a pattern language – the cloud pattern
language to describe the cloud-specific properties of cloud offerings as well as to

give advice on how to solve the most common challenges when using cloud

offerings to build custom applications.

Side Note: patterns are structured text describing abstract
problem-solution pairs.
The patterns in this book describe abstract solutions to recurring
problems in the domain of cloud computing to capture timeless
knowledge that is independent of concrete providers, products,

programming languages etc.

The cloud computing patterns have been gained from existing

applications and products to describe architectural styles, basic

runtime modules, and cloud application components. They share

a common format and are self-contained in subsections of this

book. The patterns are connected, refine other patterns, are used in a

similar scope, are used exclusively etc., thus, building a pattern

language.

1.4 Pattern Format Used in This Book

The cloud computing patterns are covered in separate sections of this book each

structured according to the same pattern format. While the NIST cloud properties are

described fairly generic and do not cover specific properties of different cloud service

models and cloud deployment models, we want to describe these properties in more

detail. For this detailed description we use a pattern format. This well-defined pattern

format is used to ease the understanding of the patterns [17] and to enable an easier

access to readers. Patterns are interconnected with cross-references in their sections to

point to patterns describing the environment in which a pattern can be applied,

patterns that are likely to be used together, patterns that are alternatives etc. In

addition to these inline references, we introduce each pattern chapter with a pattern

map. The pattern map contains the patterns of a chapter and depicts a suggested order

in which patterns may be considered as an alternative to the default sequential reading

order of each chapter. This map enables you to leave out patterns relevant only in

scope of other patterns, which you may have already identified as inapplicable in your

usage scenario. The individual patterns are then structured as follows:

1.4 Pattern Format Used in This Book 9

Pattern Name

The name is used to identify each pattern. If a pattern name is mentioned outside of

the pattern description, pattern names are in italics followed by the page number on

which the pattern is described, for example, public cloud (62).

Intent: at the beginning of each pattern, its purpose and goal is shortly stated,
to describe what the solution represented by the pattern contains.

Icon

Driving Question: this question captures the problem that is
answered by the pattern. Stating this question at the beginning
allows readers to identify if the pattern fits the problem they have in
a concrete use case.

Icon: each pattern has a graphical representation and all icons of the patterns in

this book are of the same size. They are intended to be used in architectural

diagrams modeling a cloud application and in sketches given in the solution section

of patterns.

Context

This section describes the environment and forces leading to the problem solved by

the pattern. It also may describe why naı̈ve solutions can be unsuccessful or

suboptimal. Other patterns may be referenced here. Especially, we use the pattern

format to describe cloud deployment models, cloud service models, and cloud
offerings, even though these patterns are not implemented by developers. Instead,

they describe how cloud environments and the contained offerings behave and

when they should be selected to be used in applications. These patterns, therefore,

often form the context in which other patterns implemented by developers can be

applied to create custom cloud applications on top of cloud offerings.

Solution

The solution section briefly states how the pattern solves the problem raised by the

driving question. It is kept brief, because readers shall be enabled to quickly read

the intent, question, and solution sections to get an idea what the pattern is doing in

detail. The solution section is commonly closed with a sketch depicting the

architecture of the solution.

10 1 Introduction

Result

In this section, the solution is elaborated in greater detail. The architecture proposed

by the sketch is described and the behavior of the application after implementation

of the pattern is discussed. New challenges that may arise after a pattern has been

applied may also be included here, together with references to other patterns

addressing these new challenges.

Variations

Often, patterns can be applied in slightly different forms. If the differences of these

variations are not significant enough to justify their description in a separate pattern,

they are covered in the variations section.

Related Patterns

Several patterns are often applied together as they are solving related problems, but

the application of one pattern may also exclude other patterns from being applicable.

These interrelations of patterns are described in this section. It, therefore, forms the

structure of the cloud pattern language and guides readers through the set of patterns.

Known Uses

Existing applications implementing a pattern, products offering a pattern or

supporting its implementation, are covered here exemplarily.

1.5 Overview of This Book

The cloud pattern language is structured according to a sample cloud application
that is depicted in the center of Fig. 1.1. This application is accessed by a user
group through a load balancer. This load balancer distributes user accesses

among a presentation tier that is scaled-out, thus, more processing power can

be added to this tier by adding more instances of application components. The

presentation tier accesses a business logic tier asynchronously through a message
queue. The business logic tier provides the application functionality and operates

on data stored in a separate data tier. The business logic tier is also scaled out by

adding more application component instances. A management component
depicted on the right of Fig. 1.1 handles the operations for elastic scalability,

resiliency to cope with component failures etc. The complete application is

deployed on a cloud environment that provides processing offerings on which

application components are hosted, communication offerings used to exchange

information between tiers, and storage offerings used to store data of the applica-

tion. The chapters of this book can be mapped to the entities of this reference

1.5 Overview of This Book 11

application, meaning that the patterns contained in these sections describe the

behavior of the mapped entity or describe the best practices how these entities

may designed and created. In Fig. 1.1 the book chapters and subsections are

mapped to the sample cloud application. A more detailed mapping of the individ-

ual patterns contained in each chapter to the cloud reference application can be

found in the preface of this book.

Chapter 2 covers the cloud computing fundamentals. It gives an overview of

different application workloads created by the user group that have to be handled

by the cloud application. Regarding the cloud runtime environment, it covers the

basic style how IT resources are offered according to different cloud service models
and the properties of different hosting options for clouds, i.e., the cloud deployment
models. Therefore, this chapter covers the style how cloud providers offer

Fig. 1.1 Mapping of chapters to a cloud reference application

12 1 Introduction

http://dx.doi.org/10.1007/978-3-7091-1568-8_2

IT resources to a level of detail that has to be understood by customers in order to

build applications on top of provided clouds.

Chapter 3 covers cloud offering patterns describing the functional behavior of
provider-supplied cloud environments and the contained offerings for processing,
communication and storage. These patterns do not describe in detail how such

offerings are implemented, but cover their properties, functions, and when to

choose a certain offering. Therefore, these patterns are not implemented by cloud

application developers but guide them to select the suitable cloud offerings for their

custom applications.

Chapter 4 describes cloud application architecture patterns that use the cloud
offering patterns as a runtime environment to build custom cloud applications. These

patterns cover the fundamental architectural styles of cloud applications and how

to design application components of the cloud reference application. Furthermore, it

is also covered how application components can support multi-tenancy, thus, how
they can be used by multiple isolated customers.Cloud integration patterns close this
chapter by describing special application component that can be used to interconnect

applications deployed among different cloud environments.

Chapter 5 focuses on the cloud application management functionality

required by the sample cloud application. We cover how management
components may be integrated with other application components. These man-

agement components execute management processes to enable cloud application

properties, such as the automated management of elasticity or resiliency.

Updating the application to a new version and graceful failing in case cloud

resources cannot be obtained quickly enough are additional challenges addressed

in this chapter.

Chapter 6 deals with composite patterns to describe how combinations of

patterns covered in other chapters can be used in specific application scenarios.

Especially, it covers the sample cloud application and its different variations in the

form of native-cloud application patterns. The possible distribution of the applica-

tion components comprising the cloud reference application among different cloud

environments is then covered by hybrid cloud application patterns.
Chapter 7 takes a properties-based approach to summarize how some of the

cloud properties introduced in Sect. 1.1 propagate upwards and downwards through

application landscapes and application stacks. We describe how cloud-specific

properties can be mitigated or enforced at different layers of the stack by employing

different patterns and, thus, emphasize the connection between patterns and cloud

properties.

1.6 How to Read This Book. . .

Chances are – now that you are reading this section – that you have read the other

parts of the introduction – if not then in any case you should do this first as it

introduces the book and the patterns as a whole. Then, the relevance of further parts

1.6 How to Read This Book. . . 13

http://dx.doi.org/10.1007/978-3-7091-1568-8_3
http://dx.doi.org/10.1007/978-3-7091-1568-8_4
http://dx.doi.org/10.1007/978-3-7091-1568-8_5
http://dx.doi.org/10.1007/978-3-7091-1568-8_6
http://dx.doi.org/10.1007/978-3-7091-1568-8_7

of this book can be different depending on whether you are a software architect,

developer, software project manager or general manager, whether you are acting as

a cloud application provider or as a customer of a cloud offering.

Therefore, we collected a set of user stories that we consider typical for readers

of this book. These user stories can be thought of an additional structuring of the

cloud pattern language extending the structuring introduced by the sample cloud

application in Sect. 1.5. The user stories listed below give an order in which

different readers may consider the cloud computing patterns and, thus, help you

to make the most efficient use of the book. Each user story gives you the necessary

hints on what is of high priority to read in your situation and which chapters you

might skip. If you do not want to stick to a user story, you can read the book

sequentially. Chapters go from general considerations about cloud applications and

the cloud environment to concepts how to build and manage such applications and,

finally, to a set of application usage scenarios.

Customer of Cloud Offerings

PaaSIaaS

Application I am a software architect, developer, or project

manager and want to use one or more cloud offer-

ings to host my applications.

You have been assigned the task of building an application that shall make use of a

cloud offering. This is motivated by the need to reduce time-to-market and costs of

your applications or to increase their flexibility to react to changing requirements

during runtime. Chances are high that you already know which concrete cloud

offering you were tasked to use. Then, it is of fundamental importance to under-

stand the specific properties of this cloud offering to design and build your
application accordingly and, thus, to meet your application’s specific requirements.

If you just intend to use a cloud offering but do not know which particular one or if

you should use cloud computing at all, it is still important to understand the specific

properties of cloud offerings. It will help you to select the right one for your usage

scenario.

To understand these specific properties of cloud offerings you should be familiarwith

the cloud computing fundamentals described in Chap. 2 (Cloud Computing Funda-
mentals). In particular, you should be aware of the kinds of workloads your application
may incur. Section 2.2 (Application Workloads) on Page 23 will help you to determine

that. Then, you should understand how the cloud provider offers IT resources.

You should have an idea about the service model (*-aaS) and cloud deployment

type – public cloud (62), private cloud (66), community cloud (71), or hybrid cloud
(75) – of the offerings in question. Section 2.3 (Cloud Service Models) on Page 42 and

14 1 Introduction

http://dx.doi.org/10.1007/978-3-7091-1568-8_2
http://dx.doi.org/10.1007/978-3-7091-1568-8_2.2
http://dx.doi.org/10.1007/978-3-7091-1568-8_2.3

Sect. 2.4 (Cloud Deployment Models) on Page 60 describe these two categories in the

necessary level of detail so that you understand how it impacts your architecture.

Chapter 3 (Cloud Offerings) you can read very selectively depending of the kind
of offering you would like to use. Section 3.3 (Cloud Environments) on Page 86

introduces different hosting environments offered by clouds. If you want to make

use of a cloud offering virtual servers (such as Amazon EC2 [18], Rackspace [19],

or VMware vCloud [20]) read the elastic infrastructure (87) pattern. If you wish to
use a provider-supplied application hosting environment, such as the Google App

Engine [21], read the elastic platform (91) pattern. These patterns also point to

patterns for processing offerings, communication offerings, and storage offerings

provided by these cloud environments. In either environment, you should under-

stand whether a provider assures node-based availability (95) or environment-
based availability (98) as this severely impacts the application architecture that

you should aim for. If you want to make use of cloud storage offerings or

communication offerings, such as messaging, read Sect. 3.5 (Cloud Storage
Offerings) on Page 109 and Sect. 3.6 (Cloud Communication Offerings) on Page

131. In particular you should know whether your storage offering offers eventual
consistency (126) or strict consistency (123) and whether your messaging offering

guarantees at-least-once delivery (144) or exactly-once delivery (141). These

properties also have severe impact on your application. Having understood the

basic principles of the cloud offering(s) in question you can now read Chap. 4

(Cloud Application Architectures) fully to understand how to make use of cloud
properties such as elasticity and pay-per-use in your application.

After reading these sections you will be aware of issues to consider when

selecting a cloud offering as basis for your application. Additionally, you will

have learned that building an application, which makes use of cloud properties on

lower layers, requires the adoption of some paradigms such as horizontal scaling

instead of vertical scaling to fully embrace the chances the cloud offers you.

Provider of a Software as a Service Application

MySaaS

I am a software architect, developer, or project

manager and want to build my own Software as a

Service (SaaS) offering.

You will need to understand what it means to develop an application that is

provided as a cloud offering itself, thus, to understand the specific properties of
this cloud service model.

1.6 How to Read This Book. . . 15

http://dx.doi.org/10.1007/978-3-7091-1568-8_2.4
http://dx.doi.org/10.1007/978-3-7091-1568-8_3
http://dx.doi.org/10.1007/978-3-7091-1568-8_3.3
http://dx.doi.org/10.1007/978-3-7091-1568-8_3.5
http://dx.doi.org/10.1007/978-3-7091-1568-8_3.6
http://dx.doi.org/10.1007/978-3-7091-1568-8_4

You should be familiar with the cloud computing fundamentals introduced in

Chap. 2 (Cloud Computing Fundamentals). Especially, you should have a clear

understanding of the specific properties of Software as a Service – SaaS (55) and

should decide which cloud deployment type you application uses public cloud (62),
private cloud (66), community cloud (71), or hybrid cloud (75) as described in

Sect. 2.4 (Cloud Deployment Models). If you want to base your offering on

Infrastructure as a Service (IaaS) (45) or Platform as a Service (PaaS) (49) you
also act as a customer of cloud offerings. Therefore, you should read the chapters

described in the previous user story as well. Furthermore, it is of high importance to

get a concept on what you need to do to provide the cloud properties introduced in

Sect. 1.1. Therefore, Chap. 6 (Composite Cloud Application Patterns) is what you
should read next to understand which composite application scenarios are relevant

for your offering. Afterwards, deep-dive into the application architecture patterns in

Chap. 4 (Cloud Application Architecture Patterns) used to build the relevant

composite applications. In a selective fashion, you can work through Chap. 5

(Cloud Application Management Patterns) to understand cloud-specific manage-

ment that your SaaS application may implement. Especially, patterns on elasticity

in this chapter will guide you to make your offering elastic.

After reading these chapters you will know how to build application components

comprising a SaaS application. Also, you will have gained an overview of

properties to consider when selecting cloud providers. You will also have a concept

of how to deal with the cloud-specific management tasks.

Provider of a Infrastructure or Platform Cloud Offering

MyPaaS

MyIaaS

I am an IT infrastructure manager and want to build

my own Infrastructure as a Service (IaaS) or Plat-

form as a Service (PaaS) offering.

In this case you should read Chap. 2 (Cloud Computing Fundamentals) and Chap. 3
(Cloud Offering Patterns). However, it is important to note that this book will not

tell you specifically how to build an Infrastructure as a Service – IaaS (45) or

Platform as a Service – PaaS (49) cloud, i.e., it will not give you advice on how to

design your datacenter or how to design a cloud environment using a particular type

of middleware as a basis. Nevertheless, you will learn about the cloud properties

that customers expect from your IaaS (45) or PaaS (49) cloud. Therefore, you can

design your offering accordingly to support those properties. It may also make

sense browse through Chap. 4 (Cloud Application Architecture Patterns) and

Chap. 5 (Cloud Application Management Patterns) to understand what customers

16 1 Introduction

http://dx.doi.org/10.1007/978-3-7091-1568-8_2
http://dx.doi.org/10.1007/978-3-7091-1568-8_2.4
http://dx.doi.org/10.1007/978-3-7091-1568-8_6
http://dx.doi.org/10.1007/978-3-7091-1568-8_4
http://dx.doi.org/10.1007/978-3-7091-1568-8_5
http://dx.doi.org/10.1007/978-3-7091-1568-8_2
http://dx.doi.org/10.1007/978-3-7091-1568-8_3
http://dx.doi.org/10.1007/978-3-7091-1568-8_4
http://dx.doi.org/10.1007/978-3-7091-1568-8_5

of your offering will have to consider when building their application architectures

and what kind of interfaces they will require to scale them elastically. Also, the

management processes covered in Chap. 5 (Cloud Application Management
Patterns) can be provider-supplied, thus, you may implement and provide them

to customers using your cloud offering. In this scope, you will make assumptions

about the managed application components that your customers will deploy. You

may use the patterns covered in Chap. 4 (Cloud Application Architecture Patterns)
to express such assumptions regarding the patterns that you expect your customer to

implement. For example, your management process handling elastic scaling may

require customer-developed application components to implement the stateless
component (171) pattern.

Further Reading: in case you are interested in physical data

center architectures, the following references may also be of

interest. Bauer and Adams [22] cover availability and

security for cloud data center infrastructures. Allspaw [23]

describes capacity planning for multiple scenarios. Barroso

and Hölzle [24] provide advice on the physical setup of large

scale data centers.

Enterprise Architect

I need to decide which kind of cloud offering would
serve as a basis for parts of my application land-
scape.

Given your tight schedule and the amount of applications to consider, you should

focus on the general cloud properties. Thus, Chap. 2 (Cloud Computing
Fundamentals) is the right one for you to read first. It gives you an idea on how

the workload patterns of your applications determine what type of clouds you

should use. You will also understand the differences between the cloud service

models (Sect. 2.3 on Page 42) and cloud deployment models (Sect. 2.4 on Page 60).

Having inhaled these core concepts you should directly move to Chap. 7 (Impact of
Cloud Properties). Here you will find the necessary information on how to make
use of cloud properties of various levels on the application stack and how the

selection of the cloud deployment model impacts which applications can share

1.6 How to Read This Book. . . 17

http://dx.doi.org/10.1007/978-3-7091-1568-8_5
http://dx.doi.org/10.1007/978-3-7091-1568-8_4
http://dx.doi.org/10.1007/978-3-7091-1568-8_2
http://dx.doi.org/10.1007/978-3-7091-1568-8_2.3
http://dx.doi.org/10.1007/978-3-7091-1568-8_2.4
http://dx.doi.org/10.1007/978-3-7091-1568-8_7

resources with each other. Occasionally you will need to dive in into one of the

patterns of Chap. 3 (Cloud Offering Patterns), Chap. 4 (Cloud Application Archi-
tecture Patterns), and Chap. 5 (Cloud Application Management Patterns) to get

additional background information for the decision.

After reading the mentioned chapters you will have understood the basic

properties that cloud offerings display and what you have to consider selecting a

cloud offering. The most important aspect that you will have learned is that you will

only incur fundamental savings above those for consolidation and homogenization

of IT infrastructure, if applications fully embrace the cloud properties elasticity and
pay-per-use. Most existing applications are likely not built for this, thus, they would

have to be re-architected before they become cloud-native.

Technology Evaluator and Consultant

I need to compare cloud offerings to make recom-

mendations for their use and educate others about
cloud computing.

Given the broad market of cloud computing products and services as well as the

number of products in use at one of your clients, technology consulting often starts

with a categorization of existing solutions and possible alternatives. Chap. 3 (Cloud
Offering Patterns) describes how offerings found in the cloud behave and when to

select them. These patterns may, therefore, be used for an abstract categorization of

products and offerings. Chap. 6 (Composite Cloud Application Patterns) covers
cloud-native applications and their concrete deployments to different cloud

environments. These patterns may be refined to match the concrete use cases of a

company. Especially, the two-tier cloud application (290) pattern and three-tier
cloud application (294) pattern may be refined to consider the concrete products

and services used by a company.

After reading these chapters, you can, therefore, refine the content of this book to

concrete development guidelines for a company. Chap. 2 (Cloud Computing
Fundamentals) may then be consulted to determine application requirements

regarding experienced workload and hosting environments in order to express

requirements when the development guidelines should be followed.

18 1 Introduction

http://dx.doi.org/10.1007/978-3-7091-1568-8_3
http://dx.doi.org/10.1007/978-3-7091-1568-8_4
http://dx.doi.org/10.1007/978-3-7091-1568-8_5
http://dx.doi.org/10.1007/978-3-7091-1568-8_3
http://dx.doi.org/10.1007/978-3-7091-1568-8_6
http://dx.doi.org/10.1007/978-3-7091-1568-8_2

Chief Information Officer (CIO)

I need to understand the impact of cloud computing
on my business regarding security and compliance
to laws and regulations, as well as on costs.

This book will not cover the laws and regulations relevant to cloud computing or

give a detailed cost-evaluation when cloud computing is profitable. However,

Chap. 2 may support you during these tasks by describing the style how cloud

resources are offered according to different cloud services models and their

possible impact on IT costs. Also, the cloud deployment models covered in this

chapter describe how cloud environments are shared by different user groups

significantly affecting security and privacy properties. If you are interested in a

feasibility analysis regarding the move of concrete applications to the cloud, you

should read about application workloads (Sect. 2.2 on Page 23) and fundamental
cloud architectures (Sect. 4.2 on Page 155). These will help you to determine

whether the workload experienced by an application is suitable for the cloud and

the degree to which its architecture would have to be adjusted, respectively.

After you have read these sections, you will have an idea what changed in the

cloud that may have an impact on laws and regulations your company has in place.

Also, you will be able to review applications’ suitability for the cloud and, thus,

determine whether a migration is economically feasible or not.

Student

I want to educate myself about cloud computing and
am on a tight schedule.

In this case you should read Chap. 2 (Cloud Computing Fundamentals) in full and

browse through Chap. 4 (Cloud Application Architecture Patterns), Chap. 5 (Cloud
Application Management), and Chap. 6 (Composite Cloud Application Patterns) as
well as the full Chap. 7 (Impact of Cloud Properties).

1.6 How to Read This Book. . . 19

http://dx.doi.org/10.1007/978-3-7091-1568-8_2
http://dx.doi.org/10.1007/978-3-7091-1568-8_2.2
http://dx.doi.org/10.1007/978-3-7091-1568-8_4.2
http://dx.doi.org/10.1007/978-3-7091-1568-8_2
http://dx.doi.org/10.1007/978-3-7091-1568-8_4
http://dx.doi.org/10.1007/978-3-7091-1568-8_5
http://dx.doi.org/10.1007/978-3-7091-1568-8_6
http://dx.doi.org/10.1007/978-3-7091-1568-8_7

After you have read these chapters you will have gained the basic knowledge to

be able to dig deeper. These chapters contain the basis of cloud computing and the

basic understanding of this book.

Further Reading: the content of this book extends existing
publications of the authors. In [5], we presented a first

collection of cloud computing patterns. The use of these

patterns for cloud application management has been

covered in [25]. A summary of patterns in this catalog has

been presented at the Pattern Languages of Programs

Conference (PLoP) 2011 [26]. A detailed overview on the

research process we followed to identify these patterns has

been presented at the IEEE International Conference on

Cloud Computing (CLOUD) 2012 [27]. For this book,

existing patterns were extended significantly and new

ones have been added. For up-to-date information please

also refer to our website:

http://www.cloudcomputingpatterns.org

20 1 Introduction

http://www.cloudcomputingpatterns.org/

Cloud Computing Fundamentals 2

In this chapter, we introduce the fundamentals required for the understanding of the

following chapters. As stated in the introduction, the cloud computing properties –

access via network, on-demand self-service, measured service (pay-per-use),

resource pooling and rapid elasticity – fundamentally change how IT resources

are provided and used. It is important to understand why cloud offerings have these

properties, how these properties are delivered on different levels of a typical

application stack and under which conditions an application benefits from them.

We begin by examining application workloads (Sect. 2.2) and show how they

influence the decision for the adoption of cloud offerings. Especially, we discuss

how applications experiencing different types of workloads can benefit from the

cloud computing properties covered in Chap. 1. As in that previous chapter, we use

Fig. 2.1 Pattern map of cloud computing fundamentals

All figures published with kind permission of # The Authors 2014. See list of figures.

C. Fehling et al., Cloud Computing Patterns,
DOI 10.1007/978-3-7091-1568-8_2, # Springer-Verlag Wien 2014

21

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

the NIST cloud definition [3] and emphasis on those aspects that are important to

understand the following chapters.

Having motivated the need for cloud offerings to handle different workloads we

introduce common cloud service models (Sect. 2.3) that describe different styles to

offer IT resources on different levels of an application stack. We cover the layers of

this application stack and their function in an application. Furthermore, we discuss

how the corresponding service models Infrastructure as a Service, Platform as a
Service and Software as a Service enable the cloud computing properties. In the last

section of this chapter, we introduce the cloud deployment models (Sect. 2.4) and

describe how they differ regarding the sharing of IT resources, reaction to varying

application workloads, economies of scale, and costs. These properties significantly

affect cloud adoption in companies influenced by the concern that outsourcing parts

of an application stack and sharing IT resources with other companies can nega-

tively impact privacy and security of data and processes.

Side Note: the patterns in this chapter differ from other patterns

in this book. They are not implemented by developers, but

characterize the context in which other patterns are applicable.

We used the pattern format to correlate them with other patterns

in a uniform way and use their icons to characterize cloud

environments and application requirements in Chap. 7.

2.1 Overview of Fundamental Cloud Computing Patterns

As seen in Fig. 2.1, the map of patterns covered in this chapter for application

workloads, cloud deployment types, and cloud service models are strong

interconnected. While this is not the case for most of the other patterns in this

book, these fundamental patterns form the basis for the understanding of the

remaining patterns and should always be considered completely when designing

cloud applications.

Patterns for application workloads (Sect. 2.2) describe different user behavior

resulting in changing utilization of IT resources hosting an application. This

workload can be measured in the form of user requests, processing load on servers,

network traffic, amount of data stored etc. In detail, we cover static workload (26)

that only changes minimally over time, periodic workload (29) that has recurring

peaks, once-in-a-lifetime workload (33) that has a peak once, unpredictable work-
load (36) that changes frequently and randomly, and continuously changing work-
load (40) that grows or shrinks over time.

Once the workload experienced by an application can be described and

categorized, it is important to understand the cloud service model (Sect. 2.3) used

by a cloud provider. It affects the pricing model of providers and, therefore, how

workload should be measured and evaluated in applications. We cover the three

22 2 Cloud Computing Fundamentals

http://dx.doi.org/10.1007/978-3-7091-1568-8_7

NIST cloud service models [3] in a pattern format. Infrastructure as a Service
(IaaS) (45) describes how servers are offered by cloud providers. Platform as a
Service (PaaS) (49) covers cloud offerings providing complete execution environ-

ment for a specific type of applications, i.e., those developed in a certain program-

ming language. Software as a Service (SaaS) (55) describes how complete

applications can be offered to customers.

Cloud service models and cloud deployment models are two viewpoints on the

cloud provider: cloud service models describe the style how IT resources are

offered. Cloud deployment models describe the cloud environments hosting these

IT resources, especially, regarding the group of customers they are made available

to. Therefore, a combination of cloud service model and cloud deployment type

characterizes the environment of a cloud provider. For each of the cloud deploy-

ment model patterns we describe the combinations with cloud service model

patterns in the related patterns section and discuss the usage scenarios for each

combination. The covered cloud deployment models are as follows: A public cloud
(62) is generally available to everyone. A private cloud (66) is hosted exclusively

for one company. A community cloud (71) is a cloud environment between these

two extremes and is made accessible only to a certain group of companies or

individuals that trust each other and often wish to collaborate. Finally, hybrid
clouds (75) provide means to interconnect clouds of the other deployment models

to distribute applications among various hosting environments.

2.2 Application Workloads

We use the term workload to refer to the utilization of IT resources on which an

application is hosted. Workload is the consequence of users accessing the applica-

tion or jobs that need to be handled automatically. Workload becomes imminent in

different forms, depending on the type of IT resource for which it is measured:

servers may experience processing load, storage offerings may be assigned larger or

smaller amounts of data to store or may have to handle queries on that data.

Communication IT resources, such as networking hardware or messaging systems

may experience different data or message traffic. In scope of the abstract workload

patterns, we merely assume this utilization to be measurable in some form. These

measurements form the basis to increase or decrease the number of IT resources

assigned to an application during elastic scaling, one of the cloud application

properties introduced in Sect. 1.2 on Page 5.

From a customer perspective the desire to only pay for the IT resources that are

actually used is common across many outsourcing domains – whether they are IT or

not. A non-IT example of this desire is an airplane ticket – the customer of the

transport capability only pays for the exact flights he or she takes and does not need

to buy a plane upfront, train the pilots and deal with the maintenance of the plane

afterwards just to take a flight. The requirement to reduce up-front capital

expenditures (CAPEX) and move costs to operational expenditures (OPEX) that

grow and shrink with the actual consumption of a service has led to the adoption of

2.2 Application Workloads 23

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

pay-per-use as one of the fundamental properties of cloud offerings. As customers

desire to pay for used resources only, providers must employ the principle of rapid

elasticity to elastically grow or shrink the resources assigned to a customer based on

that customer’s demand. Therefore, at least two of the essential cloud properties –

pay-per-use and rapid elasticity – result from the demand to cope with non-static

application workloads. Varia [28] discusses the total cost of ownership in detail for

handling different workloads .

In the following we examine some common utilizations of IT resources over

time. This workload is the result of user requests to an application or cloud offering
resulting in processing load, communication traffic, or data to be stored. The

workload patterns discussed in this section cover different types of workloads we

found in literature an observed in applications. For each of these workload patterns,

we discuss how they can be handled efficiently in a cloud environment.

Figure 2.2 shows a general problem that arises in scope of workload changes to

which a scaled-out application has to react by changing resources numbers. When-

ever workload is predicted as shown by the predicted workload curve, it may be

experienced slightly different, as shown in the experienced workload curve. In this

example, a predicted peak in workload started a little earlier than expected and

resource numbers have to be adjusted accordingly.

In case of static scaling, where physical servers are provisioned, the time it takes

to order, setup and start them may not be reactive enough to handle the faulty

prediction. Therefore, the necessary resources become available too late resulting in

an “underprovisioned” application. To cope with the inflexibility of such resources,
they have to be provisioned for the predicted peak-load right from the beginning

and are hard to decommission once the workload decreases. This results in an

“overprovisioned” application after the peak. This over- and underprovisioning has
a direct impact on the properties of the hosted applications. An underprovisioned

application usually cannot provide the desired user experience, as performance is

reduced and, for example, reactiveness of the application decreases.

Overprovisioning has a lesser impact on the user of the application, but leads to

higher costs as resources are provisioned but remain unused.

Predicted Workload Experienced Workload IT Resources

W
or

kl
oa

d,
 IT

 r
es

ou
rc

es

W
or

kl
oa

d,
 IT

 r
es

ou
rc

es

TimeTime

Static Scaling Elastic Scaling

Fig. 2.2 Exemplary resource provisioning

24 2 Cloud Computing Fundamentals

Elastic scaling depicted on the right of Fig. 2.2 can provision and decommission

resources much more flexibly and, thus, is not as dependent on workload

predictions. Once the increase is detected, new resources are provisioned in small

intervals and this provisioning is stopped even though the predicted workload peak

has not been reached. Therefore, elastic scaling allows a much tighter alignment of

IT resource numbers to experienced workloads, but has to be respected by the

application architecture. In consequence, when an application is deployed in the

cloud and experiences some of the workload patterns covered in this section – it has

to be built in a way underlying IT resources can be added and removed. Now, we

discuss the workload patterns, how they benefit from cloud properties, and point to

entry points in the following chapters where the necessary application architectures

enabling these benefits are covered.

2.2 Application Workloads 25

2.2.1 Static Workload

IT resources with an equal utilization over time experience static workload.

How can an equal utilization be characterized and how can
applications experiencing this workload benefit from cloud
computing?

Context

Static workloads are characterized by a more-or-less flat utilization profile over

time within certain boundaries. This means that there is normally no explicit

necessity to add or remove processing power, memory or bandwidth for change

in workload reasons. When provisioning for such a workflow the necessary IT

resources can be provisioned for this static load plus a certain overprovisioning rate

to deal with the minimal variances in the workload. There is a relatively low cost

overhead for this minimal overprovisioning.

Solution

An application experiencing static workload is less likely to benefit from an elastic

cloud that offers a pay-per-use billing, because the number of required resources is

constant. The elasticity of a cloud environment is not required to handle static
workload, but applications may still benefit from shorter IT resource provisioning

times in case of resource failures or during maintenance. Homogenization of these

resources, an effect of the cloud computing property resource pooling introduced

on Page 4 in Sect. 1.1 also reduces the complexity of the runtime environment and

may enable applications to be developed and deployed more quickly.

Figure 2.3 depicts an exemplary static workload handled using static scaling

(left) and elastic scaling (right). Both provisioning approaches have the same

amount of overprovisioned resources in case the experienced workload is lower

than the predicted workload. In scope of elastic scaling, small adjustments may be

made if the experienced workload comes close to utilizing the IT resources

completely. However, the benefits of such dynamic adjustments are very limited

as static workload does not change at all or only very little over time.

26 2 Cloud Computing Fundamentals

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

Result

An elastic cloud may be beneficial even for static workloads, because elasticity

does not only provide costs savings. As clouds can provision new resources very

quickly, often, within minutes, elasticity also simplifies provisioning and

decommissioning tasks that are necessary for other reasons, for example, to address

resource failures or for maintenance purposes. In case resources fail or need to be

taken down for maintenance, an elastic cloud would, therefore, enable the rapidly

provisioning of new resources to continue normal operation. Moving static
workloads to a cloud offering can also be beneficial because of the IT resource

homogenization. As the provider of the cloud offering can exploit economies of

scale, the use of a standardized cloud offering might be cheaper than a build-your-

own solution even when the workload transferred to the cloud offering is static.

In conclusion, the cost benefits of a cloud offering might be limited or non-

existent in case of static workload. Costs may even increase. However, in certain

cases the effects of homogenization of IT resources and elasticity in failure cases

may still provide the necessary benefits to use a cloud.

Related Patterns
• Infrastructure as a Service (IaaS) (45): this cloud service model describes how

(virtual) resources, such as servers, may be provided by a cloud. An application

experiencing static workload, requires a fixed number of such servers, but may

still benefit from such an environment if the provider supplies ready-to-use

server configurations. Also, a server failure may be easier to cope with using

provider-supplied management functionality.

• Platform as a Service (PaaS) (49): according to this cloud service model, the

provider offers an environment to which custom developed applications are

deployed directly. This alleviates the application developer from maintaining

the hosting infrastructure required by the application. Elastic scaling of hosted

application can also be handled by the provider transparently to the customer,

Predicted Workload Experienced Workload IT Resources

W
or

kl
oa

d,
 IT

 r
es

ou
rc

es

W
or

kl
oa

d,
 IT

 r
es

ou
rc

es

TimeTime

Static Scaling Elastic Scaling

Fig. 2.3 Exemplary static workload

2.2 Application Workloads 27

however, this is not the main benefit for applications experiencing static

workload.

• Software as a Service (SaaS) (55): if complete applications experiencing static

workload are obtained from a cloud environment, customers commonly pay on a

per-user basis and benefit from provider-supplied infrastructure management.

• Cloud deployment types (Sect. 2.4): these patterns should be considered during

the selection of a cloud provider to ensure that the application’s requirements

regarding security, privacy, and trust are met.

• Elastic infrastructure (87) and elastic platform (91): these patterns describe the

how cloud offerings providing the runtime for the application behave, what

interfaces they provide and which application artifacts have to be provided by

developers. The interfaces are what an application experiencing static workload

would interact with to provision replacements for failing resources as mentioned

above.

• Watchdog (260): this pattern describes how applications may be monitored for

failures. How to react to them automatically is further covered by the resiliency
management process (283) that is executed by a watchdog.

• Update transition process (275): this pattern describes how the elasticity of a

cloud may be used to switch between application versions. As this necessity is

independent of the workload experienced by an application, is it also useful for

applications experiencing static workload.

Known Uses

Static workload is experienced by many applications that do not fully utilize a

single (virtual) server. Examples are private Websites or Websites of small and

medium sized enterprises. Many small applications used internally by companies,

are used continuously by a smaller user group, i.e., a documentation wiki used by

one department or development group and, therefore, also experience static work-
load. Such small applications often cannot benefit from elasticity as it is impossible

to shut them down them down during non-utilization, because their implementation

was not designed for it. Also, these applications may be used periodically through-

out a day hindering their shutdown as well.

28 2 Cloud Computing Fundamentals

2.2.2 Periodic Workload

IT resources with a peaking utilization at reoccurring time intervals experi-

ence periodic workload.

How can a periodically peaking utilization over time be characterized
and how can applications experiencing this workload benefit from
cloud computing?

Context

In our real-lives periodic tasks and routines are very common. For example,

monthly paychecks, monthly telephone bills, yearly car checkups, weekly status-

reports, or the daily use of public transport during rush-hour, all these tasks and

routines occur in well-defined intervals. They are also characterized by the fact that

a lot of people perform them at the same intervals. As a lot of the business processes

supporting these tasks and routines are supported by IT systems today, there is a lot

of periodic utilization that occurs on these supporting IT systems.

The problem with periodic tasks and static scaling of IT resources is that there

must be enough IT resources to handle the utilization peaks while during the

non-peak times these resources are unused. This overprovisioning results in a low

average utilization of the allocated IT resources.

Solution

From a customer perspective the cost-saving potential in scope of periodic work-
load is to use a provider with a pay-per-use pricing model allowing the

decommissioning of resources during non-peak times. This has the effect that the

customer does not pay for the resources during these times. Cloud providers enable

this elastic use by offering IT resources to a large group of customers that displays

versatile workload behavior, a strategy that leads to the resource pooling property

of clouds described on Page 4 in Sect. 1.1. Therefore, IT resources not needed by

one customer are used by different customers resulting in a leveled overall utiliza-

tion of the cloud offering.

Figure 2.4 shows the handling of periodic workload using static scaling (left)

and elastic scaling (right). Static scaling always provisions IT resources for the

predicted peak load regardless of the experienced workload. Elastic scaling enables

the monitoring of the experienced workload. If this workload increases, new IT

2.2 Application Workloads 29

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

resources are provisioned dynamically. This makes the approach also less depen-

dent on workload prediction. If the experienced workload deviates from predictions

as is the case for the last peak in Fig. 2.4, monitoring detects this abnormality and

resources are provisioned or, in this case, decommissioned accordingly.

Result

The benefits for customers result from unneeded resources being decommissioned

during non-peak times and, thus, these resources not generating costs during these

times. While the pay-per-use pricing model enables the customer to pay for used

resources only, the provider still has to provision static resources to host the

offering. To solve this discrepancy, the provider uses the resource-pooling cloud

computing property described on Page 4 in Sect. 1.1. The resources not used by one

customer can now be assigned to another customer. Thus, the business case for the

provider is based on the fact that multiple customers of the cloud offering have

workload patterns that complement each other in a way that the combined workload

is more-or-less static workload (26) on the provider side. In a public cloud (62)

offering, this static combined workload is achieved by making the cloud offering

generic enough and let very diverse customers use the cloud offering. In a private
cloud (66) the setting must be carefully evaluated so that multiple users, which can

be different applications, departments or local-business units, have a combined

workload that is somewhat static.

Some cloud providers, furthermore, motivate a static long term use of their

offerings. For example, Amazon offers virtual servers of its Elastic Compute Cloud

(EC2) [18] at lower prices if they are provisioned for longer time periods, an option

called reserved instances [29]. Under such conditions, application developers

should consider provisioning some IT resources required by their custom

applications in a static fashion even when obtaining them from an elastic cloud.

Therefore, customers may face similar challenges as the cloud provider who has to

provision static resources for the peak-load of his or her offering. Due to the above

Predicted Workload Experienced Workload IT Resources

W
or

kl
oa

d,
 IT

 r
es

ou
rc

es

W
or

kl
oa

d,
 IT

 r
es

ou
rc

es

TimeTime

Static Scaling Elastic Scaling

Fig. 2.4 Exemplary periodic workload

30 2 Cloud Computing Fundamentals

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

mentioned static pricing models of some public clouds (62), the same

considerations can also lead to cost reductions when using public clouds.

Related Patterns
• Infrastructure as a Service (IaaS) (45): clouds of this service model provide

(virtualized) servers on demand. To handle periodic workload, servers can,

therefore, be provisioned and decommissioned as needed. The integration of

these servers into an application has to be enabled by the application architecture

as covered by the patterns discussed in Chap. 4.

• Platform as a Service (PaaS) (49): this cloud service model provides a hosting

environment for custom applications that are deployed directly to it. Application

management, i.e., to handle scaling or failure resiliency can be offered by the

provider as well. Therefore, IT resource provisioning and decommissioning

during the peaks of periodic workload may be handled transparently to the

customer. However, provider-supplied management functionality often has to

be configured, for example, regarding the intensity at which resources are

provisioned when a workload increase is monitored. These configurations should

be evaluated carefully in scope of periodic workload to ensure that provisioning
and decommissioning offered by the provider is reactive enough for the concrete

application scenario.

• Software as a Service (SaaS) (55): complete applications offered as a service are

commonly billed per user. Pricing models can be, for example, on a per-month

basis. This can hinder the effective use of such clouds in scope of periodic
workload if the periodic peaks occur too frequently. For example, if a SaaS
application is billed per user and month, peaks that are monthly or more frequent

hinder efficient use of the offering.

• Public cloud (62), and community cloud (71): periodic workloads are good

candidates to be outsourced to a cloud as they benefit from elasticity and pay-

per-use pricing. This elasticity in most likely to be supported by public clouds
and community clouds.

• Private cloud (66): one important aspect of periodic workload is that is often

predictable. As the peaks are not unforeseen, the provider can plan with these

peaks and try to find suitable other workloads with peaks that level-out the low-

utilization times of customers. Thus, periodic workloads are good candidates for
a resource-restricted private cloud where a provider can level out different users
with periodic workloads.

• Elasticity manager (250), elastic load balancer (254), and elastic queue (257):

to determine when to provision or decommission resources, the workload expe-

rienced by an application has to be monitored. These three patterns describe how

additional management functionality can be integrated with the remainder of an

application. They can be implemented best, if the application follows certain

architectural styles that we cover in Chap. 4.

2.2 Application Workloads 31

http://dx.doi.org/10.1007/978-3-7091-1568-8_4
http://dx.doi.org/10.1007/978-3-7091-1568-8_4

Known Use

One of the services provided by T-Systems to the T-City Friedrichshafen [30] is an

online kindergarten signup application, where parents may sign up their children for

kindergarten places available throughout the city. This sign up is only open twice

per year, which is why the workload experienced by the application follows the

periodic workload pattern.

32 2 Cloud Computing Fundamentals

2.2.3 Once-in-a-Lifetime Workload

IT resources with an equal utilization over time disturbed by a strong peak

occurring only once experience once-in-a-lifetime workload.

How can equal utilization with a one-time peak be characterized and
how can applications experiencing this workload benefit from cloud
computing?

Context

As a special case of periodic workload (29), the peaks of periodic utilization can

occur only once in a very long timeframe. Often, this peak is known in advance as it

correlates to a certain event or task. Even though this means that the challenge to

acquire the needed resources does not arise frequently, it can be even more severe.

The discrepancy between the regularly required number of IT resources and those

required during the rare peak is commonly greater than for periodic workloads (29).
This discrepancy makes long term investments in IT resources to handle this one-

time peak very inefficient. However, due to the severe difference between the

regularly required IT resources and those required for the one-time peak, the

demand can often not be handled at all without increasing IT resources.

Solution

The elasticity of a cloud is used to obtain IT resources necessary to handle the once-
in-a-lifetime workload flexibly. The provisioning and decommissioning of IT

resources as well as their use and integration in an existing application can often

be realized as a manual task performed by humans, because it is performed very

rarely at a known point in time.

In Fig. 2.5, an exemplary once-in-a-lifetime workload is depicted. Characteristic
for this type of workload is the large difference between the IT resources required

during the peak and those required otherwise. As for periodic workload (29), static

scaling provisions IT resources for the predicted workload peak. If this prediction is

wrong and the experienced workload is higher, as is the case in Fig. 2.5, additional

resources often cannot be provisioned quickly enough affecting the performance of

the application and possibly the user experience. On the right side of Fig. 2.5, the

same workload is handled using elastic scaling. As IT resources are provisioned

manually for the one-time peak the IT resource curve shows sudden increases and

2.2 Application Workloads 33

decreases. The first increase is provisioned for the predicted workload. When the

workload increases more than expected, the elasticity of the cloud enables the

additional increase.

Result

Once-in-a-lifetime workload may be handled with the same automated mechanisms

as periodic workload (29). In contrast to these automated mechanisms, the provision-

ing and decommissioning tasks necessary for once-in-a-lifetime workload may also

be handled manually using the self-service capability of the used cloud offerings. As

provisioning and decommissioning is only performed once, the benefits of an

automated alignment of IT resource numbers to the experienced workload are

reduced possibly making the additional effort to automate them unreasonable. There-

fore, the provisioning of required IT resources, their integration into a company’s IT

landscape, possibly the assignment of workload to them, and their decommissioning

may be handled by humans in these situations.

Related Patterns
• Infrastructure as a Service (IaaS) (45): this cloud service model enables the

provisioning of many additional servers to be used by the once-in-a-lifetime
workload. The integration of these servers into the customer’s application,

communication network etc. can often be realized as a manual task. Sometimes,

the additional servers do not have to be integrated at all, but the workload

assignment, it’s processing, and the use of results is completely handled by

users. This can be the case, if an employee needs one-time access to a powerful

server provided by the IaaS offering.

• Platform as a Service (PaaS) (49): applications hosted on a provider-supplied

execution environment (104) provided by a PaaS offering are often scaled

automatically. However, in scope of once-in-a-lifetime workloads, the

provider-supplied management functionality for elastic scaling may not be

Predicted Workload Experienced Workload IT Resources

W
or

kl
oa

d,
 IT

 r
es

ou
rc

es

W
or

kl
oa

d,
 IT

 r
es

ou
rc

es

TimeTime

Static Scaling Elastic Scaling

Fig. 2.5 Exemplary once-in-a-lifetime workload

34 2 Cloud Computing Fundamentals

reactive enough to detect and handle the extreme increase of resource demand

automatically. Its behavior and configurability, therefore, has to be evaluated

carefully in advance.

• Software as a Service (SaaS) (55): complete applications provided by SaaS
offerings are commonly billed per month and users may sign up at any time.

Therefore, a planned increase of application users to handle once-in-a-lifetime

workload can usually be handled.

• Public cloud (62) and community cloud (71): all cloud deployment models are

suitable for the handling of once-in-a-lifetime workload. The public and com-

munity cloud option is most flexible regarding the use of their resources. For

workload peaks occurring only once in a lifetime, these deployment models,

therefore, should be preferred.

• Private cloud (66): a private cloud can be less flexible as other cloud deployment

models and establishing a private cloud often involves handling physical IT

resources. Therefore, a private cloud is commonly only suitable for once-in-a-
lifetime workloads, if the private cloud exceeds a critical size, thus, many

applications of a company are hosted by it and experience changing workload.

Problems may arise if once-in-a-lifetime workload peaks do occur for many of

the hosted applications simultaneously.

• Elastic infrastructure (87) and elastic platform (91): these two patterns describe

offerings providing virtual servers and execution environments for custom

application components. Especially, they provide humans with self-service

interfaces through which the resources necessary for the handling of once-in-
a-lifetime workload may be provisioned and decommissioned.

Known Use

A good example for once-in-a-lifetime workload and one of the first well-known

uses of cloud offerings is the digitalization of the New York Time archives. Four

terabyte of digital scans of printed articles of the New York times between the years

1851 and 1980 were converted to Acrobat PDF documents using 100 virtual servers

[31] dynamically obtained from Amazons Elastic Compute Cloud (EC2) [18]. The

process was repeated and extended to provide full-text search by using an optical

character recognition (OCR) tool [32]. The resulting article archive is available

online and called the Time Machine of the New York Times [33].

2.2 Application Workloads 35

2.2.4 Unpredictable Workload

IT resources with a random and unforeseeable utilization over time experi-

ence unpredictable workload.

How can random and unforeseeable utilization be characterized and
how can applications experiencing this workload benefit from cloud
computing?

Context

Random workloads are a generalization of periodic workloads (29) as they require

elasticity but are not predictable. Such workloads occur quite often in the real

world. For example, sudden increases of Website accesses due to weather phenom-

ena or shopping-sprees when new products gain an unforeseen attention and public

interest. The resulting occurrence of peaks or at least their height and duration often

cannot be foreseen in advance under these conditions.

Solution

Unpredictable workloads require the unplanned provisioning and decommissioning

of IT resources hosting applications. The necessary provisioning and

decommissioning of IT resources is, therefore, automated to align the resource

numbers to changing workload quickly and directly when it is being monitored.

Unpredictable workloads are extremely hard to handle with static scaling shown at

the left of Fig. 2.6. As the maximum workload peaks and the time when they occur

are unknown, IT resources are often provisioned to a certain level that is economi-

cally feasible. If the workload exceeds what can be handled by these IT resources,

the performance of the application degrades. Elastic scaling seen on the right of

Fig. 2.6 can instead be used to monitor the experienced workload and base

provisioning and decommissioning of IT resources on this information without

relying on workload predictions. However, this requires a quick reaction to the

workload change and very steep workload inclines can still be problematic as

resources require time to be provisioned. If such strong workload inclines are

anticipated, IT resources may have to be kept on standby, as described in greater

detail by the standby pooling process (279) management pattern in Chap. 5.

36 2 Cloud Computing Fundamentals

http://dx.doi.org/10.1007/978-3-7091-1568-8_5

Result

As with periodic workload (29), providers have to be able to dynamically add and

remove resources to customers during peak-workload times and remove them when

workload intensity is lower. If one customer decommissions IT resources, the

provider has to be able to assign these resources to another customer experiencing

increased workload to offer a sustainable pay-per-use pricing model. Sometimes,

providers move this problem partly to the customer side by offering resources for a

reduced price if they are provisioned for longer time frames.

To benefit from the pay-per-use based pricing model, the customer has to be able

to dynamically provision and decommission IT resources as well. As the peaks are

random and unpredictable, utilization of resources is monitored and resource

numbers are adjusted based on this information. The customer can either do this

in custom developed management functionality or through configuration of

provider-supplied management functionality. In either case, the application has to

support the integration of newly provisioned IT resources as well as the removal of

unused IT resources. Therefore, it has to be elastic itself as described by the cloud

application property covered on Page 4 in Sect. 1.1.

Related Patterns
• Infrastructure as a Service (IaaS) (45): a cloud offering servers as IaaS com-

monly provides monitoring functions to detect workload increases. However,

how to react to such situations often has to be configured or implemented by the

customer. In this scope, it is very important to evaluate how long a server

required by the application takes to be provisioned. In scope of unpredictable
workload, the intensity of an increase may be very high creating the need to keep

additional servers on standby as described by the standby pooling process (279)
pattern.

• Platform as a Service (PaaS) (49): similar to the use of a provider-supplied

execution environment (104) for custom applications experiencing periodic
workload (29), the provider may supply management functionality handling

Experienced Workload IT Resources

W
or

kl
oa

d,
 IT

 r
es

ou
rc

es

W
or

kl
oa

d,
 IT

 r
es

ou
rc

es

TimeTime

Static Scaling Elastic Scaling

Fig. 2.6 Exemplary unpredictable workload

2.2 Application Workloads 37

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

elastic scaling that has to be configured. Especially, the intensity of provisioning

and decommissioning has to be specified directly affecting how well the appli-

cation handles unpredicted peaks.

• Software as a Service (SaaS) (55): if complete applications are obtained as SaaS
from a cloud offering, the workload manifests in the application being accessed

by more users. As billing models are often based on monthly subscriptions,

frequent workload peaks of unpredictable workload may hinder such offerings

from being used efficiently. Nevertheless, customers still benefit from manage-

ment tasks handled by the provider.

• Public cloud (62) and community cloud (71): these cloud deployment models are

very flexible regarding the dynamic provisioning and decommissioning of

resources and are, therefore, ideal for the handling of unpredictable workload.
• Private cloud (66): if a private cloud hosts few applications experiencing similar

workload, simultaneous peaks of many handled applications can impose the

problem of non-availability of IT resources, Therefore, the user-base must be

large and diverse enough, so that workload peaks of applications can be leveled

out regarding the overall utilization of the cloud.

• Elastic infrastructure (87) and elastic platform (91): to automate the provision-

ing and decommissioning of cloud resources, the cloud provider has to enable

the customer to perform these tasks in custom applications and, thus, to monitor

the utilization of an application to make good scaling decisions. The necessary

provider interfaces are conceptually described by the elastic infrastructure (87),
providing virtual servers as Infrastructure as a Service (IaaS) (45), and the

elastic platform (91) hosting custom developed application components as

Platform as a Service (PaaS) (49).
• Elasticity manager (250), elastic load balancer (254), and elastic queue (257):

making adequate decisions when to provision and when to decommission IT

resources is a challenging task. Applications and their runtime environment have

to be monitored to identify overprovisioning or underprovisioning. These three

patterns describe how the utilization of application components, requests

assigned to them, or the number of messages exchanged with them can be

used to make this decision, respectively.

• Feature flag management process (271) and standby pooling process (279): if
the time it takes a cloud provider to provision new IT resources is too long for the

anticipated workload increases, IT resources may have to be kept on standby.

The standby pooling process (279) pattern describes how this can be handled.

Additionally, feature flags may be used to degrade an application gracefully by

keeping important functionality operational in case a sufficient amount of

resources can still not be provisioned in time as described by the standby pooling
process pattern.

Known Use

One example for unpredictable workload is the workload that occurs when building
systems for connected vehicles. Some traffic patterns, such as rush-hour or traffic

38 2 Cloud Computing Fundamentals

jams that concentrate workload on certain parts of the connected vehicle system can

be anticipated. However, accidents and weather conditions, that require spontane-

ous re-routing requests or produce traffic jams that result in a higher load of requests

to the central servers, cannot be predicted up front.

2.2 Application Workloads 39

2.2.5 Continuously Changing Workload

IT resources with a utilization that grows or shrinks constantly over time

experience continuously changing workload.

How can a continuous growth or decline in utilization be
characterized and how can applications experiencing this workload
benefit from cloud computing?

Context

Many applications experience a long term change in workload. Increasing workload

often corresponds to the successful growth of a business after it was launched

impacting the supporting applications. Decreasing workload is often experienced

by legacy applications that still handle some of the workload that is slowly fading or

by applications supporting discontinued products that are continuously used by

fewer customers. In both cases – growing and shrinking workload – IT resources

need to be provisioned or decommissioned with varying intensity. This growing

and shrinking can be planned or unplanned, i.e., it can be previously known at

which rate the growth or shrinking takes place or not.

Solution

Continuously changing workload is characterized by an ongoing continuous growth
or decline of the utilization. This change can be linear, non-linear, exponential etc.

but in any case, the change in utilization is consistent towards one direction.

Elasticity of clouds enables applications experiencing continuously changing work-
load to provision or decommission resources with the same rate as the workload

changes. Figure 2.7 shows an exemplary consistently increasing workload. The

depicted static scaling and elastic scaling may be used analogous for continuously

decreasing workload. In case of static scaling seen at the left of Fig. 2.7, IT

resources are provisioned stepwise with the increasing workload. These large

increments are present, because physical hardware, such as servers, are more

efficiently provisioned in large bulks as manual tasks are involved. Elastic scaling

on the other hand align the resource increments tightly to the increasing workload,

because IT resources may be provisioned more flexibly and one by one as seen on

the right of Fig. 2.7.

40 2 Cloud Computing Fundamentals

Result

If the rate of workload change is known and not very intense, the same effects apply

as with planned once-in-a-lifetime workload (33). IT resource provisioning and

decommissioning can be performed partially as manual activity via the self-service

interface of the cloud offering. For a provider of a cloud or within a private cloud
(66), a combination of applications experiencing increasing workload and decreas-

ing workload can be used to level out the modification rate of IT resources. This

approach is especially promising if a legacy application is replaced with a new

application and both applications share a cloud, because the combined workload

can be static workload (26).

In cases of continuously changing workload where the rate of workload change

is varying or unknown, the same challenges arise as with the unpredictable work-
load (36), because the elastic scaling has to be adjusted automatically to the rate at

which growing or shrinking takes place.

Related Patterns
• Infrastructure as a Service (IaaS) (45): pricing models used by IaaS cloud

providers offering virtual servers commonly support continuously changing
workload very well. Servers used by an application can be provisioned with

increasing workload or decommissioned with declining workload. At a certain

point, when an application is not used anymore at all, a IaaS provider often

supports that virtual servers are shut down and persisted enabling the customer to

restart and application on demand if it is needed again later.

• Platform as a Service (PaaS) (49): a provider-supplied execution environment
(104) offered as PaaS behaves similar to an IaaS offering when facing continu-
ously changing workload. As scaling may be handled by the provider, IT resources

are provisioned and decommissioned automatically with increasing or declining

workload, respectively. The intensity of these operations may have to be

configured by the customer to match the continuously changing workload in a

Predicted Workload Experienced Workload IT Resources

W
or

kl
oa

d,
 IT

 r
es

ou
rc

es

W
or

kl
oa

d,
 IT

 r
es

ou
rc

es

TimeTime

Static Scaling Elastic Scaling

Fig. 2.7 Exemplary continuously changing workload

2.2 Application Workloads 41

concrete usage scenario. Similar to an IaaS offering, PaaS offerings often allow

the suspend of an application at which point only minimal costs are generated.

• Software as a Service (SaaS) (55): if complete applications provided by the

cloud as part of a SaaS offering are billed per user, use of such an offering to

handle continuously changing workload is only beneficial if the number of users

actually changes. If the same number of users access the application during a

workload increase or decline – only more or less often – the costs generated by

the application remain constant.

• Public cloud (62) and community cloud (71): continuously changing workload is
especially suitable for these environments as they are less restricted regarding

the number of IT resources that can be provided by them.

• Elastic infrastructure (87) and elastic platforms (91): just as for periodic work-
load (29) and once-in-a-lifetime workload (33), the self-service interfaces of

these cloud offerings can be used to automate the provisioning and

decommissioning of IT resources as the workload changes providing the

required elasticity.

• Elasticity manager (250), elastic load balancer (254), and elastic queue (257):

these three patterns describe how the change in workload may be monitored to

determine the necessary adjustments in resource numbers.

Known Uses

An example for a constant decline in utilization is experienced by custom applications

of manufacturers supporting specific products, i.e., provide customer manuals, service

information etc. A product that is no longer in production will eventually vanish from

the market, thus, continuously reducing the workload experienced by the application

accessed, for example, by customers, retailers, or technicians.

2.3 Cloud Service Models

Just as the NIST cloud definition [3], the following patterns compare and categorize

different cloud service models according to the layers of the application stack for

which they provide IT resources. Figure 2.8 shows the application stack that we use

throughout the book to illustrate on which layer certain cloud offering resides. The

layers map to the NIST definition of cloud service models: Infrastructure as a
Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS).
From bottom to top the six layers comprising the stack are:

• Physical hardware: tangible physical infrastructure. This infrastructure contains,
for example, servers, storage, networks connecting servers and racks containing

the servers, as well as the building housing the data center, power lines etc.

• Virtual hardware: physical hardware components can be abstracted and

mapped to virtual counterparts by a hypervisor (101) and virtual networking
(132). The aim of this mapping is to share physical hardware between multiple

42 2 Cloud Computing Fundamentals

virtual counterparts, for example, virtual servers are mapped to fewer physical

servers. This ensures that users of the virtual servers perceive the system as if

they were the only one accessing it while physical hardware can be shared.

Furthermore, virtualization reduces the need to physically adjust tangible

resources, such as servers, networking switches, cables etc. in a datacenter

when configurations have to be changed.

• Operating system: software installed directly on the physical or virtual hardware.

Operating systems abstract hardware by providing functions to applications

installed on the operating system, for example, to access network cards or files

stored on the hard drive. Examples for operating systems on this layer are

Microsoft Windows Server, Linux, or Apple OS X Server.

• Middleware: software on this layer is installed on an operating system and itself

provides an environment for installation and execution of custom applications,

processes, and data. Examples for such environments range from execution of

certain programming languages, such as Python or the Java Virtual Machine to

more complex middleware products hosting custom applications later described

by the execution environment (104) pattern. Examples for more complex

middleware are application servers such as JBoss or IBM Websphere, workflow

engines such as Apache ODE, or IBMWebsphere Process Server. Middleware can

also provide communication services later characterized by the message-oriented
middleware (136) pattern, for example, messaging by Apache ActiveMQ or IBM

Websphere MQ. Data storage can also be handled by middleware, for example,

MySQL, Oracle 11g, or IBM DB2. Such functionality is described by the storage

offering patterns in Sect. 3.5 on Page 109.

• Application software: custom applications providing functionality to human

users or other applications are associated with this layer. Examples for

applications are software for customer relationship management systems

(CRM) or enterprise resource planning (ERP).

• Business processes: the processes of a company that are supported by a set of

applications are associated with this layer. These processes are domain specific

and subsume, for example, order processing, credit approval processes, billing etc.

PaaS

Physical Hardware

Operating Systems

Middleware

Application Software SaaS

IaaSVirtual Hardware

Business Processes
Fig. 2.8 Application stack

and associated cloud service

models

2.3 Cloud Service Models 43

http://dx.doi.org/10.1007/978-3-7091-1568-8_3

Cloud offerings can reside on any of these layers. Infrastructure as a Service (IaaS)
(45) makes (virtual) hardware accessible to customers. This can be servers, network

resources or storage. Platform as a Service (PaaS) (49) maintains an execution
environment (104) for customers to deploy individual applications or components

thereof. Software as a Service (SaaS) (55) offers a complete application that is

accessible by humans through a graphical user interface or within the implementation

of custom developed applications using an application programming interface (API).

The workload patterns that we covered in the previous section can occur on any

level of the stack – be it on infrastructure, platform, software, or business process

level. The level of interest for a customer is the level at which he or she outsources

workload to the cloud. Thus, when outsourcing the infrastructure level, the work-

load patterns at the infrastructure level, i.e., server utilization and network load are

of interest. Similar, the workload patterns at the software level, for example, user

requests or the number of application users determine the necessity for elasticity

when outsourcing on the SaaS level.

In the following, we cover each of the cloud service models in more detail,

describe which part of the application stack is provider-supplied and which part is

handled by customers, and highlight the specific features and properties with regard

to the essential cloud properties: access via network, on-demand self-service,

measured service (pay-per-use), resource pooling, and rapid elasticity. Also, we

point to cloud offering patterns covered in Chap. 3 that describe the functionality

provided on the different levels of the application stack in greater detail.

44 2 Cloud Computing Fundamentals

http://dx.doi.org/10.1007/978-3-7091-1568-8_3

2.3.1 Infrastructure as a Service (IaaS)

Providers share physical and virtual hardware IT resources between

customers to enable self-service, rapid elasticity, and pay-per-use pricing.

How can different customers share a physical hosting environment
so that it can be used on-demand with a pay-per-use pricing model?

Context

Applications often experience varying workloads that lead to different utilizations

of IT resources on which these applications are hosted. Especially, in the scope of

periodic workloads (29) with reoccurring peaks and the special case of once-in-a-
lifetime workloads (33) with one dramatic increase in workload, IT resources have

to be provisioned flexibly. One common hosting environment for applications is

formed by independent servers on which applications are installed. With changing

workload, the number of these servers shall be adjusted.

Solution

A provider using the Infrastructure as a Service (IaaS) service model offers

physical and virtual hardware, such as servers, storage and networking infrastruc-

ture that can be provisioned and decommissioned quickly through a self-service

interface. On these IT resources, customers install their individual operating

systems, middleware, and applications software supporting their business processes

as depicted in Fig. 2.9.

Result

IaaS clouds in detail offer infrastructure IT resources such as servers, storage

(volatile memory and persistent disk storage) and networking. Many IaaS providers
offer customers the choice to provision resources to multiple data center locations,

allowing the distribution of applications and platforms across multiple geographic

locations. How an IaaS cloud behaves is covered in detail by the cloud offerings

patterns in Chap. 3. In this scope, the elastic infrastructure (87) pattern describes a

common combination of cloud offering to provide IaaS to customers (see the

2.3 Cloud Service Models 45

http://dx.doi.org/10.1007/978-3-7091-1568-8_3

related patterns section for a detailed list). The cloud computing properties

introduced in Sect. 1.1 on Page 3 are enabled in an IaaS cloud as follows.

Access via network: remote access to provided servers and to the storage

disks is one of the key features of IaaS. Typically, after starting a virtual server it

can be accessed remotely via a secure shell (SSH) or graphically, for example,

using the remote desktop protocol (RDP) depending on the operating system

running on the server and its configuration. Customers typically get full access

to the servers.

On-demand self-service: customers can often access IaaS offerings via a Web-

portal that allows customers to configure and provision servers, storage and net-

work connectivity. One important aspect of such an on-demand self-service portal

is the monitoring which allows supervising the status of the provisioned IT

resources, their configuration and the corresponding charges. This information

can also often be extracted from the cloud provider in an automated fashion using

an application programming interface (API).

Pay-per-use: pricing models for IaaS are often based on an hourly charge for

servers, amount of data stored per month, and amount of data exchanged via the

cloud providers network per month. Prices for servers range from a few cents per

hour for small servers to multiple dollars per hour for larger possibly clustered

servers. To ease the calculation and comparison with traditional server processing

power, volatile memory and disk storage costs are commonly determined

according to a certain set of server configurations that resemble traditional

servers. Often, several sizes of these server configurations are available resem-

bling T-shirt sizes such as S, M, L, XL, XXL etc. Regarding the data exchanged

with a cloud, different prices are often allocated for data uploaded to the cloud

and data downloaded from the cloud. Therefore, when storing data in a cloud, the

costs for transferring it and the additional monthly costs for storing it in the cloud

have to be considered.

Resource pooling: resources of an IaaS cloud are shared between customers on

the hardware infrastructure level. Thus, the IT resources pooled between different

Physical Hardware

Operating Systems

Middleware

Application Software

Virtual Hardware

Business Processes

Infrastructure as a Service
(IaaS)

Fig. 2.9 Infrastructure as a service in the application stack

46 2 Cloud Computing Fundamentals

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

customers of an IaaS cloud typically are: the physical data center, physical servers,
physical storage disks, and physical network components such as routers, switches,

cables and firewalls as well as the personnel to maintain and operate the data

centers.

Rapid elasticity: the flexibly use of servers is a key feature of IaaS clouds

leading to their success and differentiating them significantly from other server

hosting offerings. In a typical IaaS offering, new servers are started within minutes,

firewalls and storage disks are provisioned almost instantly. Similarly all billed

resources can be returned to avoid further charging, within minutes. This rapid

elasticity on the infrastructure level enables adding and removing infrastructure

resources on-demand.

Traditional server hosting could be compared to IaaS. However, these offerings
often lack the dynamic pay-per-use billing model and rapid elasticity. Instead users

pay monthly fees for servers whether they use them or not. Also, the ability to

provision and decommission virtual servers via a self-service interface that can be

accessed programmatically is often unavailable. However, the billing models of

these hosting providers are sometimes also available at IaaS providers. Users may

then decide between pay-per-use billing and a lower fixed price for resources that

are provisioned for longer time periods.

Related Patterns
• Elastic infrastructure (87): an IaaS offering can subsume multiple services and

functionality. A typical collection of this functionality is covered in greater

detail by the elastic infrastructure pattern. The covered functions subsume

repositories in which templates for servers including pre-installed and

configured operating systems, as well as selected applications components or

middleware are managed. Commonly, these images can be maintained by the

cloud provider or can be created by the customer or a user community. Further-

more, an elastic infrastructure typically offers an application programming

interface (API) through which its functionality can be accessed. Thus, it

becomes possible to dynamically provision and decommission (virtual)

machines, storage and network elements. APIs are of particular importance

when building more sophisticated Platform as a Service (PaaS) (49) offerings
and Software as a Service (SaaS) (55) offerings that use these APIs to automati-

cally scale on demand. Some of the functionality subsumed by an elastic
infrastructure can also be offered as an independent cloud offering. Therefore,

these offerings have been described as the separate patterns hypervisor (101),
block storage (110), and virtual networking (132).

• Hypervisor (101): many cloud providers use hardware virtualization to host

multiple servers provided to customers on an IaaS basis on a single physical

server. The basic concepts of this virtualization are described by the hypervisor
pattern. In almost all cases of publically available IaaS clouds, thus, IaaS
offerings using the public cloud (62) deployment model, virtualization is used

2.3 Cloud Service Models 47

as the basic implementation to realize the virtual server configurations. How-

ever, a few providers also offer physical servers as IaaS offering providing the

same cloud properties described in Sect. 1.1 on Page 3.

• Block storage (110): as mentioned above disk storage is often provided by an

IaaS offering in addition to servers. This storage can be kept independent from

virtual servers in case a server is shut down or fails. The behavior of such

offerings providing disk storage is described by the block storage pattern.
• Virtual networking (132): one of the resources typically provided and billed in an

IaaS offering is the connection network and data exchanged through it. The

network aspect of IaaS does not only include the bandwidth but often also

firewalls that can be configured to allow access to and from certain ports over

certain protocols to the resources started in the IaaS cloud. The virtual network-
ing pattern describes how this aspect of an IaaS offering behaves.

Known Uses

Since the advent IaaS offerings, this type of cloud offering has gained widespread

acceptance. A large number of offerings in form of public clouds (62) and in the

form of virtual private clouds (66) have been established. Amazon’s Elastic Com-

pute Cloud (EC2) [18] and Rackspace [19] are public cloud (62) providers providing
an IaaS offering. Other companies, such as T-Systems with their Dynamic Services

for Infrastructure (DSI) [34] provide IaaS clouds for virtual private cloud (66)

scenarios. In addition to these cloud offerings, a wide range of tools and data center

automation products have been established, both in the open source and commercial

market that enable companies and providers to build their own private clouds (66)
offering IaaS. VMware’s vCloud [20] is an example for a commercial implementa-

tion. OpenStack [35] is an open source implementation that is also used and

supported by Rackspace [19]. Similar open source software for the management

of an IaaS clouds is OpenNebula [36] and Eucalyptus [37]. Each of these

implementations support most of the functionality common for an elastic infra-
structure (87).

48 2 Cloud Computing Fundamentals

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

2.3.2 Platform as a Service (PaaS)

Providers share IT resources providing an application hosting environment

between customers to enable self-service, rapid elasticity, and pay-per-use

pricing.

How can custom applications of the same customer or different
customers share an execution environment so that it can be used
on-demand with a pay-per-use pricing model?

Context

In Sect. 2.2, various workloads have been covered and how applications

experiencing them can benefit from an elastic cloud. Especially, periodic workloads
(29), once-in-a-lifetime workloads (33), and unpredictable workloads (36) have

shown suitable for this, but other type of workloads could also benefit from a

cloud environment. Infrastructure as a Service – IaaS (45) flexibly provides servers
to customers of applications for this purpose. However, this means that customers

have to install and manage their own operating systems, middleware, and execution
environments (104), such as a Java Virtual Machine, an application server,

webserver, databases etc. If many customers require similar hosting environments

for their applications, there are many redundant installations resulting in an ineffi-

cient use of the overall cloud. Furthermore, the management complexity to maintain

an operating systems and middleware has to be handled by each customer of the

IaaS offerings. Especially, small and medium-sized businesses may not have the

manpower and skills to perform these tasks efficiently and thoroughly.

Solution

A cloud provider using the Platform as a Service (PaaS) service model offers

managed operating systems and middleware. Customers may host individual appli-

cation software supporting their business processes in this environment as depicted

in Fig. 2.10. Management, such as updating operating systems or middleware is

handled by the provider. Often, the provider expects custom applications to be

developed in a certain style to additionally handle the elastic scaling and failure

resiliency of applications for the customer.

2.3 Cloud Service Models 49

Result

Platform as a Service (PaaS) subsumes the layers above physical and virtual

hardware and below complete software applications – thus, it contains operating

systems as well as middleware products, i.e., database management systems,

application servers, message-oriented middleware (136) etc. How these individual

services behave is covered in detail by the cloud offerings patterns in Chap. 3. In

this scope, the elastic platform (91) pattern describes a common combination of

these offering to provide PaaS to customers (see the related patterns section for a

detailed list). The cloud computing properties described in Sect. 1.1 on Page 3 are

enabled as follows in a PaaS offering.

Access via network: commonly, customers of a PaaS offering can access the

offered execution environments (104) hosting an application via a network, most

prevalent either an intranet or the Internet, to deploy their applications. Some PaaS
clouds also offer development environments accessible for customers via a network

to build and test their applications.

On-demand self-service: similar to an IaaS (45) cloud, PaaS clouds offer a self-
service portal or an application programming interface (API) through which

customers can deploy applications. In contrast to an IaaS cloud, the PaaS self-

service interface often does not display virtual servers and does not allow starting

and stopping individual servers. The PaaS self-service interface is instead focused

on the offered environment that scales independently, thus, no scaling functionality

is developed by the customer. The self-service portal also displays the consumed IT

resources as well as their health status, i.e., their current availability and statistics

for uptime and utilization.

Pay-per-use: as a PaaS offering provides an environment to host applications

directly billing is performed based on the use of functionality provided by this

environment. A PaaS provider can bill for different functionality, i.e., per user

access to a hosted application, per message exchanged by that application etc.

For example, Amazon bills per message queued in their Amazon Simple Queue

Physical Hardware

Operating Systems

Middleware

Application Software

Virtual Hardware

Business Processes

Platform as a Service
(PaaS)

Fig. 2.10 Platform as a service in the application stack

50 2 Cloud Computing Fundamentals

http://dx.doi.org/10.1007/978-3-7091-1568-8_3
http://dx.doi.org/10.1007/978-3-7091-1568-8_1

Service (SQS) [38]. Storage offerings are typically billed either per amount of items

stored or per storage volume. Web application runtimes can be billed per amount of

handled requests or per amount of exchanged data. PaaS offerings, thus, commonly

bill according to the type of IT resources they offer, instead of billing for servers or

network bandwidth, as IaaS (45) offerings do.

Resource pooling: when discussing PaaS, lines can be blurred between

“native” PaaS offering and a managed IaaS offering with pre-installed and

managed middleware components – a variation of PaaS covered in greater

detail by the elastic platform (91) pattern. One important distinction is that a

PaaS offering pools resources on the middleware layer whereas an IaaS
offering pools resources on an infrastructure layer. Thus, in a PaaS storage

offering, for example, multiple customers share the same middleware whereas

they would have a distinguished instance of the middleware in an IaaS (45)

cloud. However, to enable this sharing, isolation between customers has to

be ensured. The consequence of sharing on the middleware layer is that the

offered middleware has to be redesigned to be multi-tenant aware: for the

customer it should appear that he or she is using a dedicated instance of

the middleware. The provider can then balance load on the middleware layer,

preventing the need to start and stop underlying virtual servers frequently. In a

native PaaS isolation of tenants is also guaranteed through some throttling

mechanisms, preventing that one customer uses up the resources assigned to

the shared runtimes with faulty applications or by overloading the environment

on purpose.

Rapid elasticity: flexible scaling on the platform layer requires the cloud

provider to dynamically add and remove IT resources from individual customers

depending on their demands. However, as PaaS clouds are characterized

by their sharing capability on the middleware layer, this problem can be

delegated to a load balancer. This load balancer distributes the requests of

customers to the middleware instances that have the applications of the respec-

tive customer installed. Deployment of applications to middleware instances is

handled in a transparent manner to the customer, either at deployment time or

on-demand. Therefore, additional requests can be handled without modifying

the applications. However, when all customers start to increase or decrease

their number of requests, at some point more middleware instances need to be

added to or removed from the PaaS cloud. This can either be done automati-

cally via an underlying IaaS infrastructure or manually if the PaaS is not built

upon an IaaS cloud. However, it is important that once the platform is scaled

out with new middleware instances, these instances become able to serve a

customer’s requests. Again this is ensured by automatically deploying the

customer’s application on them.

Therefore, the key to be able to rapidly increase the amount of requests to be

handled from one customer is the ability to dynamically and transparently distribute

these requests among multiple instances of the middleware and, thus, among

multiple (virtual) servers. This is similar to a traditional cluster with the addition

of multi-tenancy, i.e. the ability to serve multiple customers concurrently from

2.3 Cloud Service Models 51

these middleware instances while guaranteeing isolation between those customers.

In case of provider-managed scaling of the PaaS cloud, applications often have to

be developed in a certain way to be deployed to multiple instances transparent to the

user. Often, applications have to rely on external state information as described by

the stateless component (171) pattern and by the elastic platform (91) pattern.

Related Patterns
• Elastic platform (91): a PaaS offering commonly consists of a certain set of

functionality. As this functionality can be provided as individual cloud offerings,

we described them as individual patterns. The elastic platform pattern describes

how these other patterns are commonly combined to form a PaaS offering. The

central functionality of a PaaS offering is an execution environment (104).
Furthermore, the elastic platform can provide storage functionality in the form

of a blob storage (112), relational databases (115), and key-value storage (119)
as well as communication functionality to exchange information between hosted

applications and external applications. This is covered in greater detail by the

message-oriented middleware (136) pattern.
• Execution environment (104): this pattern describes how an environment can be

provided in which customer-developed applications can be deployed and

executed. Especially, it covers how functionality required by many applications

can be provided by this environment so that implementation complexity is

reduced for the customer.

• Blob storage (112), relational database (115), and key-value storage (119): an

elastic platform (91) can provide file-system-like blob storage. Table-centric
storage that supports more complex querying functionality that the retrieval of

files is provided by relational databases and key-value storage.
• Message-oriented middleware (136): communication in cloud applications

should be asynchronous to enable the loose coupling cloud application property

described on Page 7 in Sect. 1.2. We cover how this property can be enabled in

greater detail in the loose coupling (156) pattern as well.

• Cloud application architecture patterns (Chap. 4): applications deployed on an

elastic platform (91) offered as PaaS should follow certain architectural

principles to benefit efficiently from this environment. The patterns in Chap. 4

describe these principles as patterns. Most importantly, an application running on

an elastic platform often has to be distributed, as described by the distributed
application (160) pattern. Furthermore, it is important to consider where the

application holds its state. Often, PaaS providers recommend or enforce that their

own storage offerings mentioned above are used for this purpose, thus, the

application must be implemented using stateless components (171). When

interacting with the communication functionality, it is important to consider the

delivery behavior. Messages can be delivered at-least-once (144) or exactly-once
(141) using a transaction-based delivery (146) or timeout-based delivery (149)

protocol. The application components interacting with this provider-supplied

52 2 Cloud Computing Fundamentals

http://dx.doi.org/10.1007/978-3-7091-1568-8_1
http://dx.doi.org/10.1007/978-3-7091-1568-8_4
http://dx.doi.org/10.1007/978-3-7091-1568-8_4

functionality, therefore, may need to deal with message duplicates by

implementing the idempotent processor (197) pattern. Furthermore, they may

need to extend the delivery assurance of messages to assure their successful

processing, by implementing the transaction-based processor (201) pattern or

the timeout-based message processor (204) pattern. When interacting with cloud

storage offerings provided as PaaS, data consistency assured by the provider also
has to be considered as described by the strict consistency (123) and eventual
consistency (126) patterns.

• Cloud application management patterns (Chap. 5): some PaaS providers handle

the elastic scaling of hosted applications for the customer. If this task, however,

has to be handled by the customer himself or herself, the cloud application

may need additional management components (see Sect. 5.2 on Page 242)

that monitor the workload experienced by the application and provision or

decommission resources accordingly. An elasticity manager (250) does this

based on the utilization information obtained about application components.

An elastic load balancer (254) monitors the number of synchronous requests

to the applications and an elastic queue (257) the number of asynchronous

messages. The behavior implemented by these management components is

covered in greater detail by management process patterns starting in Sect. 5.3

on Page 264.

Further Reading: there are additional patterns that cover

application design. Even though most of these patterns did

not have PaaS in mind when they were written, many of

them are applicable to applications deployed on a PaaS
offering. Hope and Woolf [1] cover patterns for message-

based enterprise application integration. These patterns are

also used by pattern of this book and are summarized by the
message-oriented middleware pattern (136). Buschmann

et al. [14], Gamma et al. [2], and Fowler [15] also

describe patterns that can be considered when designing

application components. Buschman et al. describe

architectural patterns applicable to standalone and

distributed applications. Gamma et al. cover best practices

for object-oriented programming. Fowler’s enterprise

architecture patterns describes, for example, how a

business usage scenario and the data and functionality it

relies on may be mapped to data structures and application

functions to be implemented.

2.3 Cloud Service Models 53

http://dx.doi.org/10.1007/978-3-7091-1568-8_5
http://dx.doi.org/10.1007/978-3-7091-1568-8_5
http://dx.doi.org/10.1007/978-3-7091-1568-8_5

Known Uses

PaaS offerings, such as Google’s App Engine [21] or WSO2’s Stratos Live [39]

allow the deployment of (Java) Web applications. Others offer an elastic platform
(91) to deploy and create business processes, for example, Metasonic [40],

RunMyProcess [41] or Cordys [42]. In the virtual private cloud (66), offerings

such as T-System’s Dynamic Services for SAP solutions [43] also exist. Another

well-known PaaS offering is Force platform [44] of salesforce.com which allows

consumers to build extensions to the Salesforce CRM SaaS offering [45]. The

Amazon Simple Queue Service (SQS) [38] offers message-oriented middleware
(136) in the cloud. Other PaaS offerings do not only provide an elastic platform
(91), but also additional services required in a certain business domain, for exam-

ple, data about the stock market or systems to build and test customer-developed

applications. An example of the latter is CloudBees [46] which offers a complete

environment for software development and hosting.

54 2 Cloud Computing Fundamentals

2.3.3 Software as a Service (SaaS)

Providers share IT resources providing human-usable application software

between customers to enable self-service, rapid elasticity, and pay-per-use

pricing.

How can customers share a provider-supplied software application
so that it can be used on-demand with a pay-per-use pricing model?

Context

The workload patterns covered in Sect. 2.2 have shown that different workloads

experienced by an application make them more or less suitable for an elastic cloud

environment. Especially, workload peaks experienced in scope of periodic work-
load (29), once-in-a-lifetime workload (33), and unpredictable workload (36) can

be handled efficiently by a cloud environment. However, a prerequisite for this

decision is that the workload of applications has to be measured. Then, a cloud

offering to host that application has to be selected. Regardless whether this offering

follows the IaaS (45) or PaaS (49) service model, the application needs to be

developed and deployed. Especially, small and medium enterprises may not have

the manpower and know-how to develop custom software applications for this

purpose. Other applications have become commodity and are used by many

companies, for example, office suites, collaboration software, or communications

software. However, if these applications are shipped to customers to be installed on

IT resources managed by customers, the complexity to provision and maintain these

resources or to select a suitable cloud provider still has to be handled by the

customer.

Solution

A provider using the Software as a Service (SaaS) service model offers a complete

software application to customers who may use it on-demand via a self-service

interface. The provider, therefore, provides customers with application software to

support their individual business processes as depicted in Fig. 2.11. Customers

perform their individual business processes, but do not have to install and manage

an application required to support these processes. Accesses to this application are

billed on a pay-per-use basis.

2.3 Cloud Service Models 55

Result

SaaS is the established cloud service model in which the advantages of the cloud

principles become most obvious. Instead of buying and installing hardware, paying

for licenses, handling installation and configuration of the necessary middleware

and software products, training and paying for system administrators on the hard-

ware, middleware and software level, customers can simply obtain the required

software from the cloud. In general, all applications could be provided by a SaaS
cloud. Typical SaaS clouds provide application software for customer relationship

management (CRM), collaboration, video conferencing and document manage-

ment. Common to all SaaS offerings is the fact that a certain domain-specific

functionality is offered, along with service level agreements (SLA) that guarantee

the availability of that functionality. Applications offered as SaaS are managed,

updated, and maintained by the provider. Customers can start using the provided

applications in minutes instead of spending a significant amount of time to setup

software applications on their own premises. Often, SaaS clouds allow the individ-

ual customers to configure and customize the application within defined boundaries,

ranging from the specification of the user interface colors and logos to the configu-

ration of workflows and custom data fields. The essential cloud computing

properties introduced in Sect. 1.1 on Page 3 are enabled by a SaaS cloud as follows.
Access via network: in most cases, SaaS clouds provide Web-applications that

offer a user interface accessed via HTTP over the Internet or an intranet of a

company. Additionally, the functionality provided by the application can often

also be accessed remotely via an application programming interface (API) to be

integrated with other custom applications of a customer.

On-demand self-service: the Web-based user interface of a SaaS application

provides management functionality through which customers can sign up for

access to a SaaS offering. In this management user interface a customer can

often test and evaluate the application(s) in question and can book the application.

The customer will then be given access to the respective application and is

Software as a Service
(SaaS)

Physical Hardware

Operating Systems

Middleware

Application Software

Virtual Hardware

Business Processes

Fig. 2.11 Software as a service in the application stack

56 2 Cloud Computing Fundamentals

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

also commonly provided with information about the application status, bills etc.

The management interface also allows the customer to issue trouble tickets if

needed. The self-service portal enables customers to add and remove additional

users for the application, configure the application and provide access to the

application’s API in order to being able to integrate it with other applications

of the customer.

Pay-per-use: the realization of pay-per-use depends on the domain of the SaaS
application. Strictly speaking the unit of payment should be dependent on the

objects this application deals with. For example, in a Web conferencing system,

pay-per-use could mean that the provider charges for every minute a user accesses a

Web-conference. This corresponds to the load that is put on the offering, in case

customers conduct conferences, the software generates load and, thus, the provider

bills the customer. Typically, for SaaS offerings where the load is not tied directly

to an object managed by the system, or where the computation would be very

complex, schemes that require a payment per user per month are established. It is

assumed that each user that uses the application will put load on the system and,

thus, costs occur for the provider.

Resource pooling: sharing of IT resources of a SaaS offering occurs on the

software level. As a result different customers share not only the hardware and

infrastructure resources as in the PaaSmodel but also the software resources. In this

scope, customers are also called tenants, i.e., companies that have multiple

employees accessing the application on their behalf. To prevent that different

tenants interfere with each other, the application offered as a SaaS application

must be multi-tenant aware and, thus, isolate tenants from each other, especially

regarding the individual tenant’s data. The advantage of multi-tenancy on the

application layer is that the underlying middleware and infrastructure do not

necessarily need to be multi-tenant aware as the isolation is handled on the

application level. As an alternative to a multi-tenant solution, each tenant may be

assigned a complete application stack for itself. This type of deployment is used by

application service providers (ASP). However, the static fashion by which

resources are assigned to tenants in this model hinders providers to share resources

and scale elastically.

Rapid elasticity: in the context of a SaaS offering, rapid elasticity means that

the offered software supports customers with a periodic workload (29), unpredict-
able workload (36), or continuously changing workload (40) profile, regarding the

offered functionality. For example, for the teleconferencing offering this means that

customers can book none or multiple teleconferences at once without necessarily

having to pre-book them in advance or paying for one teleconference all the time

even when they do not use it. Thus, as a consequence, the provider must balance the

workload of the different tenants within the application. If this balancing is not

possible an elastic platform (91) or elastic infrastructure (87) should underpin the

application to be able to add and remove resources dynamically, if needed.

2.3 Cloud Service Models 57

Related Patterns

The patterns in this book describe how cloud applications can be built on top of

IaaS (45) or PaaS (49) offerings. The cloud application properties described in

Sect. 1.2 on Page 5 are enabled through the use of cloud application architecture

patterns of Chap. 4 and the cloud application management patterns of Chap. 5.

Especially, the cloud application properties also make applications suitable to be

offered as SaaS themselves. The following patterns are especially relevant to meet

the challenges arising when offering applications to multiple tenants as a service:

• Distributed application (160): this pattern describes how an application’s func-

tionality may be decomposed to be distributed among several IT resources. This

separation makes the application easier to scale elastically to handle the work-

load of all customers. It also assures that customers may configure on a finer

granular which parts of the application shall be shared with other customers.

• Stateful component (168) and stateless component (171): an important aspect to

consider in shared SaaS applications is the storage of data as customers are very

sensitive to it. Therefore, application components that do not hold any state

information are much easier to share between customers.

• Data access component (188): even though customers often require similar

functionality, for example, for collaboration, schedules, project management

etc. the data handled by customers may be domain specific. While every

customer may, for example, manage his or her own customers using a SaaS
application, the data associated stored for each customer is likely to be similar to

other users of the SaaS application but may require some additional information.

For example, a clothing retailer may want to store body size information for each

customer in addition to common information, such as shipping addresses and

billing information. In order to fulfill the requirements of all customers, a SaaS
application, therefore, often has to be configurable regarding the data format it

supports. How this can be achieved in a cloud application is covered by the data
access component pattern.

• Multi-tenancy patterns (starting in Sect. 4.4 on Page 208): these patterns

describe how application components comprising a SaaS application can be

shared between different customers. Three different levels of sharing are

covered in this section. Shared components (210) provide the same functionality

to all tenants and do not support isolation. Tenant-isolated components (214)

allow the tenant-specific configuration of the provided functionality and also

ensure isolation between tenants. Dedicated components (218) are a portion of

the application that is provided exclusively for a tenant. Often, SaaS (55)

providers offer different implementations of application components and let

the customer decide to which degree application functionality shall be shared

with others.

58 2 Cloud Computing Fundamentals

http://dx.doi.org/10.1007/978-3-7091-1568-8_1
http://dx.doi.org/10.1007/978-3-7091-1568-8_4
http://dx.doi.org/10.1007/978-3-7091-1568-8_5
http://dx.doi.org/10.1007/978-3-7091-1568-8_4

Side Note: the patterns elastic infrastructure (87) and elastic
platform (91) describe what kind of behavior users of IaaS (45)

clouds and PaaS (49) clouds may expect, respectively. To match

the cloud service model descriptions (Sect. 2.3), one could expect

patterns describing the same aspects for SaaS (55) clouds.

However, these are missing for two reasons. First, SaaS clouds

differ significantly in behavior and functionality, depending on

the business domain they support. Therefore, in these clouds,

there is no common behavior by the time of this writing that

could be abstracted to a pattern. The second reason, why these

patterns are missing is that SaaS clouds do not form the basis for

applications whose architecture can be based on the patterns

described in this book. In scope of SaaS no custom code is

deployed whose architecture would have to be considered. Some

applications offered as SaaS can be extended using custom code in

which case, the SaaS provider commonly offers a well-integrated

PaaS cloud to host custom extensions to the SaaS application.

Known Uses

Saleforce.com offers a Web-based customer relationship management (CRM) soft-

ware [45] as a SaaS offering. As customers demand extensibility and configurability

of this application, salesforce.com also offers the Force platform [44] an elastic
platform (91) as PaaS (49) to host such custom extensions, i.e., to integrate the

SaaS CRM software with customers’ other, possibly on-premise applications.

Microsoft offers its complete office and collaboration suite as a Service, as part of

Office 365 [47]. IBM offers collaboration software as part of its IBM SmartCloud

[48]. Similar products, subsuming office and collaboration functionality, are available

fromGoogle Apps [49] as well. Telco providers, such as Deutsche Telekom started to

offer SaaS applications, for example via their Business Marketplace [50] offering

which allows independent software vendors (ISVs) to provide their applications in a

SaaS model, where the telco provider handles automatic provisioning, billing, and

support.

2.3 Cloud Service Models 59

2.4 Cloud Deployment Models

Regardless of the service model followed by a cloud provider, a cloud can be hosted

in different forms. These cloud deployment models can be mainly differentiated by

the user groups accessing a cloud and the degree by which IT resources hosting the

cloud itself are shared between customers. Regarding the accessibility of a cloud,

the following cloud deployment types are introduced by the NIST cloud definition

[3]: public clouds – generally accessible to everyone, private clouds – accessible

only by a single institution, community clouds – accessible to a controlled group of

institutions, and hybrid clouds – combining any set of other clouds. The NIST has

further identified a number of deployment scenarios regarding the physical

resources on which the different cloud deployment models may be hosted [51].

The following patterns cover these cloud deployment models and different ways

to host them in detail. In this scope, we use the term “tenant” for companies or

individuals that act as a customer of a cloud. Each tenant may have multiple users

associated with it, i.e., a company may act as the customer of a cloud that is then

used by employees of that company. We characterize each cloud deployment model

regarding the number of tenants accessing the cloud and the number of tenants

sharing IT resources hosting the cloud itself. For example, access to a cloud may be

restricted to a certain user group, while the IT resources hosting the cloud itself may

still be shared with others. Furthermore, we investigate what the different

restrictions in accessibility mean for customers and providers and how the different

cloud properties (see Sect. 1.1 on Page 3) access via network, on-demand self-

service, measured service (pay-per-use), resource pooling and rapid elasticity

influence the use of different cloud deployment models.

The restriction of the number of tenants accessing a cloud and sharing IT

resources has a significant impact on the cloud properties displayed by different

cloud deployment models, especially, regarding resource pooling, rapid elasticity

and subsequently metered service (pay-per-use). A larger number of tenants

reduces the effects of workload changes experienced by one tenant on the overall

workload to be handled by the cloud provider. This is the case, because the overall

workload subsumes all tenant workloads. By allowing fewer tenants to share a

cloud or the underlying IT resources, the overall workload experienced by the cloud

is less likely to be leveled out. The resulting workload changes make it harder for

the cloud provider to ensure rapid elasticity, because resource pooling between

tenants is less effective. This also affects the ability of the cloud provider to enable

pay-per-use pricing models, because IT resources may become underutilized.

Figure 2.12 depicts the different cloud deployment models regarding the com-

mon level of elasticity and pay-per-use they provide. A public cloud (62) having the
most tenants sharing it can enable the highest levels of elasticity and pay-per-use

where only the operational costs are billed to customers. A community cloud (71)

serves fewer tenants, often collaborating companies. An upfront investment may be

required by these companies to establish the community cloud (71). Also, elasticity
may be reduced as the collaborating companies may experience similar workloads.

This effect is even more predominant in a private cloud (66) used by only one

60 2 Cloud Computing Fundamentals

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

tenant making upfront investments and reduced elasticity even more likely. A static

data center is not covered by a pattern, but depicted in Fig. 2.12 as well. It does not

use cloud computing technologies, requires up-front investments, and does not

provide elasticity. The hybrid cloud (75) spans all these properties as it integrates

applications hosted in the different environments. Note that the properties displayed

by cloud deployment types are not generic. A private cloud accessed by a similar

large and diverse user group as a public cloud is likely able to present the same

properties. A public cloud used only by a small number of customers that experi-

ence similar workload will face similar challenges as a private cloud.
After reading this section you will be able to investigate which cloud deploy-

ment model is suitable for you application scenario. We cover each cloud deploy-

ment model in detail and how it deals with the essential cloud properties introduced

in Sect. 1.1 on Page 3.

Hybrid Cloud

Elas�city

Pay-per-UseUp-front
Investments

Sta�c Scaling

Public Cloud

Opera�onal
Costs

Rapid Elas�city

Community Cloud

Private CloudSta�c
Data Center

Fig. 2.12 Level of elasticity and pay-per-use of different cloud deployment types

2.4 Cloud Deployment Models 61

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

2.4.1 Public Cloud

IT resources are provided as a service to a very large customer group in order

to enable elastic use of a static resource pool.

How can the cloud properties – on demand self-service, broad network
access, pay-per-use, resource pooling, and rapid elasticity – be
provided to a large customer group?

Context

A provider offering IT resources according to one of the cloud service models, IaaS
(45), PaaS (49), or SaaS (55) has to maintain physical data centers that are limited

in capacity. IT resources hosted in these static datacenters, nevertheless, shall be

made accessible to tenants dynamically following a pay-per-use pricing model. The

capacity of the data center, however, has to be planned statically and cannot be

adjusted with the same elasticity, even though this behavior shall be displayed to

customers. Enabling this elastic use of an otherwise static environment is especially

challenging if customer experience changing workload described as periodic work-
load (29), once-in-a-lifetime workload (33), unpredictable workload (36), or con-
tinuously changing workload (40). Additional problems arise for the provider and

the customer, as the different customers may not trust each other and, therefore,

have to be isolated.

Solution

The public cloud is the cloud deployment model that best meets the desired cloud

computing properties, because it serves a large number of customers and is, thus,

large enough for customer diversity to level out peak workloads of individual

applications. A public cloud shares a provided hosting environment between

customers and this environment is accessible by many customers as depicted in

Fig. 2.13 possibly reducing the costs for an individual customer. Leveraging

economies of scale in this fashion, furthermore, enables a dynamic use of the static

environment by customers, because workload peaks of some customers occur

during times of low workload of other customers. The different workloads experi-

enced by customers’ applications are, therefore, leveled out regarding the overall

customer group. This results in a more or less static workload (26) experienced by

the provider that can be handled by a static number of physical IT resources in the

62 2 Cloud Computing Fundamentals

data center. Security mechanisms are employed to isolate customers from each

other. Often, this involves monitoring accesses and data entering and leaving the

cloud in order to identify unlawful behavior. Such mechanisms are of vital impor-

tance to the success of the cloud provider, because trust is the major asset for the

acceptance of public clouds.

Result

By sharing resources between a large number of customers and because of customer

diversity, for example, due to geographic customer distribution, it is ensured that the

peak workloads of customers can be handled, because other customers require fewer

resources during those times. The size of a public cloud enables dynamic and elastic

resource usage, while ensuring a leveled utilization of the static physical data center

hosting the cloud. The capacity of this data center may be adjusted with much less

dynamicity. The essential cloud computing properties introduced in Sect. 1.1 on

Page 3 are enabled by public clouds as follows:
Access via network: public clouds are commonly made available over the

Internet as they aim at being open to anyone without the need to install access

software on the client. However, public clouds can also be available via a restricted
and secured network connection.

On-demand self-service: in a public cloud, on-demand self-service is com-

monly realized as a Web-portal that allows customers to register with their credit

card and then book, provision, manage, and decommission applications, platforms

or infrastructure via that Web-portal. Also, an application programming interface

Fig. 2.13 Public cloud

2.4 Cloud Deployment Models 63

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

(API) is often provided to customers for automation of these tasks in their

applications. Commonly, the allowed customer group is unrestricted enabling

anybody with a credit card to sign up and use the public cloud. No complex setup

or administration is needed on the provider side to accommodate a new customer.

Customers can view their resource consumption and other monitoring information

via the Web portal. The consequence of being able to rapidly sign up and then

provision resources is that the Web portal and the cloud is seen as a standalone

system that is not integrated in the order management and billing processes of the

customer. As a consequence, even corporate users often use their private credit

cards to book IT resources in public clouds.
Pay-per-use: Public clouds commonly do not require any upfront investments

and bill strictly on a pay-per-use basis. Sometimes, cloud providers motivate long-

term provisioning of IT resources by charging less for IT resources that are

provisioned for a longer timeframe. This is beneficial for customers who may

handle their static workload (26) with such resources and provision pay-per-use

resources for workload peaks only. For the provider, the impact of workload

changes on the customer side may be less and easier to predict by offering such

pricing models. Some public cloud providers also offer cheaper resources during

times when the overall utilization of the cloud is low in order to motivate time-

uncritical applications to perform processing during these non-peak times and not

during those times when the workload experienced by the cloud is high.

Resource pooling: public clouds are ideal with regard to resource pooling as

they allow many customers to access and use the environment. These customers

host different applications with versatile workload ensuring that workload peaks

can be balanced across applications of multiple customers. As the cloud customer

base and the users of applications hosted by these customers are large enough and

provide enough diversity to level out peaks of individual applications, public clouds
are often cheaper than private clouds (66) that sometimes have to deal with very

similar usage by a few applications of a customer. One essential property that public
cloud providers need to implement on their respective layer on the stack, i.e., the

cloud service model they use, is multi-tenancy. As multiple customers (tenants) use

the same IT resources, isolation is of crucial importance and must be guaranteed by

the provider.

Rapid elasticity: Public clouds do not have any restrictions with regard to rapid

elasticity as they are typically not integrated with customer-internal processes such as

approval processes that sometimes hinder elasticity. Public clouds are often associated

with unlimited resource availability, however, some cloud providers limit the amount

of resources an individual consumer can host at the same time and implement higher

quota only on request to accommodate customers with higher resource demands. The

pricing models may be less dynamic than the degree of elasticity displayed by the

cloud. Provisioned IT resources often become available within minutes and can be

decommissioned with similar reactivity. However, the billing intervals may be longer,

for example, resources may be billed for an hour even though they were provisioned

only for 30 min.

64 2 Cloud Computing Fundamentals

Related Patterns
• Infrastructure as a Service (IaaS) (45): a public cloud offering IaaS provides a

flexible and easy-to-use hosting environment for servers. Provider-supplied or

customers-managed configurations of these servers, so called server images

containing hardware configuration, operating systems, and pre-installed software,

enable a quick provisioning of standardized servers. The physical hardware of

public IaaS clouds is often virtualized through the use of hypervisors (101) to

enable the sharing of physical hardware between customers. This resource pooling

between customers eases elastic provisioning and decommissioning of servers and

leads to low prices for customers all of which is relevant to provide the cloud

properties covered in Sect. 1.1 on Page 3 to customers.

• Platform as a Service (PaaS) (49): a public cloud offering PaaS provides an

open elastic platform (91) offering an execution environment (104) used by

custom applications in addition to a number of offerings for communication

and storage that hosted applications can use. These environments are often

designed for publicly accessible Web-applications and provide functionality

required in this scope.

• Software as a Service (SaaS) (55): public clouds offering SaaS provide

standardized ready-to-use globally accessible applications over the Internet.

These applications are commonly configurable in provider-defined means. The

infrastructure and application components are highly shared with other

customers to enable elasticity and pay-per-use. Typically, there are no upfront

investments, but monthly fees per user accessing the application.

Known Uses

Public clouds providing IaaS are, for example, the Amazon Elastic Compute Cloud

(EC2) [18], and Rackspace [19]. The Google App Engine [21], Microsoft Windows

Azure [52], WSO2 Stratos Live [39], and Amazon Elastic Beanstalk [53] are

examples for public clouds offering PaaS for applications developed in different

programming languages. Public clouds using the SaaS service model are the

Google Apps [49] or the Saleforce Customer Relationship Management (CRM)

[45] offering. The Google Apps [49] provide collaboration tools, such as e-mail or

scheduling. Salesforce also provides a PaaS (49) offering for extensions to its CRM
SaaS offering, the Force [44] platform.

2.4 Cloud Deployment Models 65

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

2.4.2 Private Cloud

IT resources are provided as a service exclusively to one customer in order to

meet high requirements on privacy, security, and trust while enabling elastic

use of a static resource pool as good as possible.

How can the cloud properties – on demand self-service, broad network
access, pay-per-use, resource pooling, and rapid elasticity – be
provided in environments with high privacy, security and trust
requirements?

Context

Many factors, such as legal limitations, trust, and security regulations, motivate dedi-

cated, company-internal hosting environments only accessible by employees and

applications of a single company. These environments may follow any of the cloud

service models: IaaS (45), PaaS (49), or SaaS (55). As they shall be used exclusively by
one company, the challenge arises that physical data centers have a static capacity but

shall provide a certain level of dynamicity and elasticity of IT resource use. Since the

user group is, however, often smaller than in a public cloud (62) and often displays a

similar workload behavior, economies of scale are harder to leverage.

Solution

A private cloud enables the cloud computing properties in a company-internal data

center, thus, only one tenant accesses the cloud. Alternatively, the private cloud may be

hosted exclusively in the data center of an external provider, then referred to as

outsourced private cloud as depicted in Fig. 2.14 and according to the NIST cloud

definition [3]. In case of an outsourced private cloud, some IT resources, such as

networking infrastructure may be shared with other tenants. Sometimes, public cloud
(62) providers offer means to create an isolated portion of their cloud made accessible to

only one tenant, but still sharing hosting IT resources with all other tenants. This

alternative, a virtual private cloud, is further described in the variation section.

Result

The main difference between a private cloud and other cloud deployment models is

that the IT resources hosting the cloud that are shared with other customers are

66 2 Cloud Computing Fundamentals

reduced drastically, up to the point where no resources are shared. This separation

may, especially, include the physical separation of networking hardware or the

physical location of the data center as a whole. A private cloud, therefore, may

provide a high level of security and privacy, which may, however, reduce its

elasticity and the ability to provide a pay-per-use pricing model. This limitation

is often caused by the smaller customer groups as, for example, in public clouds
(62). The workloads of different tenants, thus, do not level each other out with

respect to the workload experienced by the cloud as a whole. Static IT resources

supporting the cloud then have to be provisioned for peak workloads as the peak

workload of one tenant cannot be addressed with resources that another tenant does

not need at that specific time. Of course, private clouds of a significantly large

company whose employees display the same degree of diversity regarding work-

load behavior as customers of a public cloud (62) do not experience such

limitations. Such very large private clouds can be considered equivalent to public
clouds regarding the level of elasticity they provide. In this book, we mostly

consider private clouds to be smaller than public clouds leading to the above

mentioned challenges and limitations.

To fully support the cloud computing properties as a public cloud (62) does, a

private cloud has to have a certain number of globally distributed users, so that the

workload experienced by different departments is leveled out. But even if a private
cloud does not exceed the critical size to leverage economies of scale effectively,

the introduction of private clouds to a company can still be beneficial. A private
cloud centralizes and standardizes IT resources to leverage economies of scale as

good as possible and to enable automated management. This homogenization and

automation helps companies to reduce their IT management costs, which are

significantly inflicted by the complexity of heterogeneous IT environments [7].

Number of Tenants
accessing the Cloud

Number of Tenants
sharing IT Resources

hos�ng the Cloud

Dedicated Hos�ng
Accessed by one Tenant

Dedicated Hos�ng
Accessed by mul�ple Tenants

Shared Hos�ng
Accessed by one Tenant

Shared Hos�ng
Accessed by mul�ple Tenants

Private Cloud Outsourced
Private Cloud

Virtual
Private Cloud

Fig. 2.14 Private cloud, outsourced private cloud, and virtual private cloud

2.4 Cloud Deployment Models 67

The cloud computing properties introduced in Sect. 1.1 on Page 3 are enabled as

follows.

Access via network: depending on the type of private cloud – normal or

outsourced private cloud, access via the connection network is different. In a

normal private cloud hosted in a company’s own datacenter, access is enabled via

the company-internal network. In an outsourced private cloud access is often

realized via secured communication channel between the customer and provider

networks, a so-called a virtual private network (VPN). A virtual private cloud
uses the same connection network as the public cloud (62) offered by the cloud

provider.

On-demand self-service: in a private cloud this property is commonly assured

by a Web-portal providing a self-service interface similar to a public cloud (62). In
difference to public clouds, customers do not sign up with their credit card but

with their company-internal billing targets, such as project names or department

identifiers. Furthermore, company-internal cost-management often requires that

order management, approvals, and billing are integrated with the self-service

interface to reflect the company-internal procedures. Especially, approval pro-

cesses are often integrated into the self-service portal of a private cloud. In an

outsourced private cloud setting in which integration with a customer’s on-

premise IT infrastructure is required, the provider’s identity management, order

management and billing systems are commonly integrated with the customer’s

systems. This integration can make the setup of such an outsourced private cloud
quite complex.

Pay-per-use: in a private cloud where a set of IT resources is used only by one

individual company and then elastically assigned to projects, applications or

departments of that company, pay-per-use is often not easy to ensure. This is caused

by the fact that all IT resource of the private cloud are provided exclusively for one
company and, thus, experience the workload peaks of that company. Therefore, IT

resources have to be provisioned for peak workloads if the company-internal

diversity of user behavior is insufficient to level-out the utilization of the overall

cloud. As a consequence, IT resources may experience times of low utilization

hindering pay-per-use as these resources generate costs for the provider but are not

used. In an outsourced private cloud the initial resource provisioning is delegated to
the provider. The provider may assign some resources dynamically to this

outsourced private cloud. However, it often has to be ensured at all times that no

resources are shared between customers, which may increase the complexity of the

process.

Resource pooling: key for effective resource pooling and, thus, the ability to

scale elastically is the right mix of applications that allow balancing the peak

workload while keeping overall resource utilization high. In a private cloud,
resources cannot be shared between customers. The number of users sharing a

resource pool is commonly reduced to the employees of the company using the

private cloud. Therefore, resource pooling in a private cloud cannot be established on
an intra-company basis, but has to occur on an intra-department or intra-application

68 2 Cloud Computing Fundamentals

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

basis by shifting IT resources between different departments, applications, or other

organizational entities as the experienced workload demands. This may reduce the

benefits of resource pooling to enable elasticity and pay-per-use in small private
clouds.
Under these conditions, companies still benefit from the homogenization and

centralization aspects of a private cloud. For example, a private cloud can provide

standard development servers to reduce setup times for new projects.

Rapid elasticity: rapid elasticity works similarly in a private cloud as in a

public cloud (62) regarding the enabling technologies. IT resources may, there-

fore, be provisioned and decommissioned very quickly via the self-service inter-

face. There are two factors in a private cloud that may, however, hinder rapid

elasticity: the limited size of data centers and a company’s management processes

involving human tasks. The former aspect means that elasticity in a private cloud
may be limited if the whole company experiences a workload peak simulta-

neously, because rapid elasticity can only be performed within the boundaries

of smaller static data centers. The second aspect considers the impact of a

company’s approval processes, billing processes etc. on provisioning and

decommissioning times. For example, if a company requires a human manager

to approve every provisioning of a new server for a project, this approval likely

takes very long with respect to the actually required time to provision the server

in the private cloud. Therefore, the integration of these processes with the self-

service interface is of vital importance.

Variations

As a compromise between the flexibility of public clouds (62) and the security of

private clouds, public cloud providers may offer so called virtual private clouds.
These portions of a public cloud are often separated from other customers using the

environment through networking and access configurations. This ensures that the

virtual private cloud is isolated to some degree from other resources in the public
cloud (62) while some IT resources may still be shared. Often, the virtual private
cloud can additionally be integrated into the private cloud of a company using an

encrypted communication link, such as a virtual private network (VPN) connection.

The virtual networking (132) pattern discusses the used technologies offered by the
public cloud provider as a communication offering in greater detail.

Related Patterns
• Infrastructure as a Service (IaaS) (45): a private cloud offering IaaS provides a

flexible, isolated, and trusted hosting environment for servers accessible by one

company. The provided virtual servers are standardized, as server images

containing the server configuration, operating systems, and pre-installed soft-

ware, may be shared between tenants, i.e., departments of the company. Multiple

2.4 Cloud Deployment Models 69

servers may be provisioned based on a server image, as described by the elastic
infrastructure (87) pattern. As hardware is not shared with others companies, the

private cloud provides a high degree of isolation between the hosted servers but

limited elasticity. Upfront investments in hardware may be necessary when

establishing this deployment model.

• Platform as a Service (PaaS) (49): the combination of PaaS and private clouds
provides a standardized, isolated and trusted execution environment (104) for
custom applications that provides common functionality for communication and

storage used by these applications. While elasticity may still be limited, a high

level of homogenization is realized by this environment as many applications of

a company share it and rely on commonly accessible functions. Upfront

investments may be required.

• Software as a Service (SaaS) (55): a private cloud following the SaaS service

model offers trusted standardized applications to one company that are either

standard applications or custom developed applications. This application is

commonly used by many employees in a self-service manner and is integrated

with other applications of the company. Similar to the other cloud service

models using a private cloud may require upfront investments in infrastructure.

• Batch processing component (185): applications on a private PaaS or IaaS cloud
may be designed to control the utilization of IT resources by delaying some of

the workload processing. Especially, in a private cloud, where the overall

number of IT resources that can be used elastically may be restricted, this allows

processing workload when conditions are most feasible. Batch processing
components (185) provide asynchronous application functionality that is acces-

sible at all times, but is only processing requests when resources are available.

Thus, the knowledge of the workload profiles of all applications hosted in a

private cloud offering can lead to better resource utilization.

Known Uses

Tools to establish a private IaaS cloud in a company-internal datacenter are

provided, for example, by the VMware product suite comprised of vCloud [20],

vSphere [54], and ESX [54]. Open source software supporting similar functionality

are Eucalyptus [37], OpenNebula [36], or OpenStack [35]. The mentioned variation

of a virtual private cloud offering IaaS (45) is, for example, provided by Amazon

Virtual Private Cloud (VPC) [55] or T-Systems’ Dynamic Services for Infrastruc-

ture (DSI) [34].

70 2 Cloud Computing Fundamentals

2.4.3 Community Cloud

IT resources are provided as a service to a group of customers trusting each

other in order to enable collaborative elastic use of a static resource pool.

How can the cloud properties – on demand self-service, broad network
access, pay-per-use, resource pooling, and rapid elasticity – be
provided to exclusively to a group of customers forming a
community of trust?

Context

Companies may have to collaborate for various reasons. For example, a company

may be a supplier of another company. Furthermore, a group of companies or

public institutions, such as university or hospitals may have to exchange informa-

tion or may have to share personnel for cost reduction. Whenever companies

collaborate, they commonly have to access shared applications and data to do

business. While these companies trust each other due to established contracts etc.,

the handled data and application functionality may be very sensitive and critical to

their business, thus, rendering the use of an easily accessible public cloud (62)

impossible. Also, private clouds (66) may be unsuitable, because IT resources are

not used exclusively by one company but need to be accessed by the collaborating

community.

Solution

IT resources required by all collaborating partners are offered in a controlled

environment accessible only by the community of companies that generally trust

each other. This community cloud contains all shared data and functionality that the
participating companies need to do their business. Depending on the concrete

requirements on privacy, security, and trust, a community cloud can be provided

in a private data center controlled by the collaborating companies (often, one

company acts as the cloud provider). Also, the community cloud be hosted in a

data center of a third party, then referred to as outsourced community cloud shown

in Fig. 2.15. Another variation is the hosting of a community cloud in an isolated

portion of a public cloud (62) called virtual community cloud.

2.4 Cloud Deployment Models 71

Result

A community cloud hosted by one company is commonly used if this company has a

central role in the collaboration, for example, a manufacturer provides a collabora-

tion environment shared by its employees, contractors, and suppliers. Outsourced
community clouds are, especially, suitable, if there is no company trusted enough by

all the other companies to maintain the data center. Virtual community clouds are
commonly easiest to establish as they depend on resources of a public cloud (62) to
which access is only granted to collaborating partners. The cloud computing

properties introduced in Sect. 1.1 on Page 3 are enabled by a community cloud as

follows.

Access via network: similar to public clouds (62) and private clouds (66), the
community cloud provides a Web-based self-service interface accessible by humans

and commonly an applications programming interface (API) to be used for auto-

mation of provisioning and decommissioning of IT resources. If the community
cloud is hosted by one company, that company may access it via its own network

and grants external access to collaborating partners through a secured connection,

i.e., via a virtual private network (VPN).

On-demand self-service: on-demand self-service within the community cloud
follows the same principles as a public cloud (62). Any of the collaborating

companies can provision and decommission IT resources, which are then billed

to the ordering institution. The integration of company-internal billing and man-

agement processes is often not realized to the same degree as in a private cloud
(66), because the individual processes of collaborating companies may differ

significantly.

Number of Tenants
accessing the Cloud

Number of Tenants
sharing IT Resources

hos�ng the Cloud

Dedicated Hos�ng
Accessed by one Tenant

Dedicated Hos�ng
Accessed by mul�ple Tenants

Shared Hos�ng
Accessed by one Tenant

Shared Hos�ng
Accessed by mul�ple Tenants

Community Cloud Outsourced
Community Cloud

Virtual
Community Cloud

Fig. 2.15 Community cloud, outsourced community cloud, and virtual community cloud

72 2 Cloud Computing Fundamentals

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

Pay-per-use: to establish a community cloud, up-front investments may be

necessary for the collaborating companies. After its installment, the ability of the

community cloud to provide pay-per-use to users mainly depends on its size and

whether or not the workloads experienced by the collaborating companies lead to a

leveled overall utilization of the cloud. This diversity may be less compared to

customers of a public cloud (62), because collaborating companies may experi-

ence similar workload peaks due to tasks they perform together. The billing model

supported by the community cloud needs to reflect that there are multiple

companies that can order IT resources in the community cloud. This is similar to

a public cloud (62), however, further billing models may be required. For exam-

ple, one company may order IT resources to be used by its suppliers. Therefore,

the tenant ordering the IT resources has no control over the users accessing them

as would be the case if users were the employees of the ordering company. If IT

resources are billed on a per-request basis, the ordering company may desire to

define quotas on accesses performed by suppliers, which has to be supported by

the community cloud.
Resource pooling: resources are shared between the collaborating companies.

Therefore, the number tenants between which resources are shared is increased with

respect to a private cloud (66), as sharing is possible on an inter-company basis.

Because the collaborating companies trust each other more as users of a public
cloud (62) due to established contracts etc. the desired isolation between customers

of a community cloud may be reduced and, thus, easier to establish. Access control

for the hosted IT resources, on the other hand, is likely to be more complex to

enable the control of information exchange between companies.

Rapid elasticity: rapid elasticity in a community cloud is similar to that in a

public cloud (62), if the customer group is large enough and displays a similar

diversity. This helps to avoid the problems arising in a private cloud (66) due to the
often smaller customer group. However, as the companies participating in a com-
munity cloud collaborate, they may experience similar workload behavior. The

peaks of experienced periodic workload (29), once-in-a-lifetime workload (33), or

unpredictable workload (36) may, therefore, occur at the same time hindering the

ability of a community cloud to scale elastically.

Variations

Similar to the virtual private cloud variation of the private cloud (66) deployment

model, a community cloud may be hosted in an isolated portion of a public cloud
(62). This portion is commonly isolated on the networking level to avoid direct

communication between the other IT resources in the public cloud (62) and those

hosted in the virtual community cloud. Other hardware, for example, physical

servers on which the virtual servers of multiple customers are hosted through the

use of a hypervisor (101) may still be shared.

2.4 Cloud Deployment Models 73

Related Patterns
• Infrastructure as a Service (IaaS) (45): community PaaS clouds provide a shared

hosting environment where different companies may provision servers to pro-

vide data and shared functionality with each other. Preconfigured server images

containing common operating systems and software combinations may be

provided to provision servers in a more standardized manner, but the same

level of homogenization as in private clouds (66) is unlikely as companies can

have their own internal standardization efforts to homogenize IT resources that

they also use in the community cloud.
• Platform as a Service (PaaS) (49): a community cloud offering PaaS provides a

standardized, collaborative trusted elastic platform (91) providing an execution
environment (104) and other offerings based on which collaborating companies

may develop shared applications that rely on common functionality and data.

The elasticity of this platform may be limited if the number of collaborating

companies is low, but it is highly standardized to ease development and to

coordinate information exchange. Often, these environments focus on the col-

laborative collection and evaluation of data.

• Software as a Service (SaaS) (55): community SaaS clouds often provide the same

functionality as public SaaS offerings, but application functionality is only acces-
sible to collaborating companies. Another difference to other SaaS offerings is

that collaborating companies do not desire to perceive the application as if they

were the only user, but want to exchange information with other companies using

the SaaS offering, for example, to handle orders or to manage schedules.

Known Uses

The same technologies to create private IaaS clouds can be used to create commu-
nity IaaS clouds in a dedicated data center. The only difference is the group of

companies that are granted access to this environment. Google provides it’s Google

Apps [49] public SaaS offering also as a SaaS community cloud for U.S. govern-

ment agencies [56].

74 2 Cloud Computing Fundamentals

2.4.4 Hybrid Cloud

Different clouds and static data centers are integrated to form a homogeneous

hosting environment.

How can the cloud properties – on demand self-service, broad network
access, pay-per-use, resource pooling, and rapid elasticity – be
provided across clouds and other environments?

Context

The cloud deployment model used by a company in a specific use case is often

determined by the required level of accessibility, privacy, security and trust,

because private clouds (66), public clouds (62), and community clouds (71) signifi-
cantly differ on these assurances. A company is, however, likely to use a large set of

applications to support its business. These applications and possibly their individual

application components may have versatile requirements making different cloud

deployment models suitable to host them. In order to match these requirements

efficiently, it is, therefore, desirable to host applications and their components in

different clouds and static data centers leading to an integration challenge. Even if

applications could use the same cloud, legacy and non-cloud applications may exist

that also have to interact with cloud applications. A company, therefore, has to

manage these different hosting environments and communication has to be enabled

between them.

Solution

A hybrid cloud integrates multiple private clouds (66), public clouds (62), commu-
nity clouds (71) and static date centers. Applications and their individual

components are deployed to the hosting environment best suited for their

requirements and interconnection of these environments is ensured. A hybrid
cloud, therefore, integrates different hosting environments that can be accessed

by different number of tenants and share underlying IT resources between different

amounts of tenants as shown in Fig. 2.16.

2.4 Cloud Deployment Models 75

Result

Through the establishment of a hybrid cloud, the applications and their components

required by a company may be hosted in multiple hosting environments, for

example, to use a private cloud (66) ho handle static workload (26) and deploy

additional IT resources in a public cloud (62), if the workload increases suddenly,

for example, due to a once-in-a-lifetime workload (33) peak. Such a workload spill-
over allows private clouds (66) to be scaled more optimistically resulting in a

higher utilization and a reduced cost of the overall environment. The cloud com-

puting properties introduced in Sect. 1.1 on Page 3 are ensured by integrating the

individual environments to form the hybrid cloud as follows. Especially, a hybrid
cloud can be used to add some of these properties to a static data center by

integrating it with a cloud environment.

Access via network: access via network to the separate clouds and static data

centers is enabled as if they were not integrated. Additional connections are

established between these environments to enable access between them as well.

As the environments may assure different levels of privacy, security, and trust, this

access has to be regulated in many cases. For example, public clouds (62) and

community clouds (71) could be integrated with a private cloud (66). The community
cloud (71) and public cloud (62) are accessible via a more or less public network that

often can be accessed easily from the private cloud (66). Access from the public

network to the private cloud is, however, often restricted. Under such conditions, a

private cloud (66) commonly acts as the resource broker of the formed hybrid cloud
that decides for each access request to a resource whether it is served from private
cloud (66) resources, or public cloud (62) resources. This is determined by the

required service level agreements, especially taking security and trust issues into

account.

Fig. 2.16 Hybrid cloud in the cloud scope

76 2 Cloud Computing Fundamentals

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

On-demand self-service: similar to an integrated access via network, the

different self-service interfaces of integrated clouds can be subsumed to provide a

unified interface to customers. Often, one cloud or data center acts as the provider of

the self-service Web-portal and forwards provisioning and decommissioning

requests to the other clouds if needed. The known uses section of this pattern

covers some tools providing such unified interfaces to multiple clouds.

Pay-per-use: as the self-service interface of a hybrid cloud integrates different

clouds, it has to consolidate the resource billing of the different environments as

well. If possible, a hybrid cloud should provide a homogeneous billing model rather

than just adapting the billing models of all integrated hosting environments to

reduce complexity. Customers are then billed according to this billing model and

the hybrid cloud provider pays integrated providers according their individual

billing models.

Resource pooling: sharing of resources is enabled internally by the integrated

private clouds (66), public clouds (62), or community clouds (71). However, the
hybrid cloud may add additional management functionality on top of this resource

pooling by optimizing the IT resource distribution among the integrated

environments. For example, the hybrid cloud may consider the individual utiliza-

tion of integrated environments in this decision, thus, providing a homogenous

resource pool comprised of individual resource pools of different hosting

environments. This integration of provisioning and decommissioning decisions

has to be considered especially, when integrating a static environment that does

not offer resource pooling with a cloud environment.

Rapid elasticity: elasticity regarding the overall resources in all environments

should be enabled by the hybrid cloud’s integration functionality just as resource

pooling has to be enabled between the integrated hosting environments. Again, the

integrated environments handle their individual elasticity and may support more or

less flexibility regarding the provisioning and decommissioning of IT resources.

Through this integration, a hybrid cloud may, for example, provision IT resources

in a public cloud (62), if those of a static data center are insufficient during

workload peaks. For this decision, the hybrid cloud, thus, has to monitor the

integrated environments to balance resources among them.

Related Patterns
• Infrastructure as a Service (IaaS) (45): integration of different clouds on the

IaaS level is commonly done by enabling networking communication between

different clouds. One approach is to establish virtual private networks (VPN)

between the different clouds which may make the deployment of additional

servers in these environments handling the integration necessary. The involved

technologies are covered in greater detail by the virtual networking (132)

pattern.

2.4 Cloud Deployment Models 77

• Platform as a Service (PaaS) (49): integration of different PaaS offerings may

be enabled by special application components hosted in these environments. The

application component proxy (228) pattern describes how application function-

ality may be made available in a different environment than where it is hosted.

The message mover (225) pattern describes how messaging functionality

provided in different environments may be integrated.

• Software as a Service (SaaS) (55): many SaaS applications allow customers to

integrate other applications that they use in different environments. This func-

tionality is, however, supported by the provider of the SaaS application. If

custom developed integration functionality is required, for example, to trigger

a company-internal application if a certain condition arises in a SaaS application
custom implementations are likely to be required. Many SaaS providers offer

PaaS (49) offerings for this purpose, where customers may host custom

extensions to the SaaS application, i.e., to integrate them with other applications

used by the customer.

• Hybrid cloud applications (starting in Sect. 6.3 on Page 303): these patterns

cover different distributions of application functionality providing user

interfaces, processing functionality, and data handling among different

environments. The motivation to assign certain functionality to an environment

is discussed as well as the integration of this functionality into one application.

Known Uses

Challenges to integrate communication between IT resources residing in different

clouds have to be addressed to form a hybrid cloud. This can be done using an

Enterprise Service Bus (ESB) that offers accesses to different resources in a

seamless fashion. On-premise ESBs, such as Apache ServiceMix [57] or IBM

WebSphere Enterprise Service Bus [58] can be used. Additionally, the ESB itself

can be accessed as a service from a cloud providing a PaaS (49) offering. For

example, this is offered by Microsoft AppFabric, part of Windows Azure [52].

VMWare and its partners, such as T-Systems [59], offer the VMware vCloud

product that can be used to build private clouds (66) in a model, where the private
cloud can be extended into a hosted cloud offering of the partner to build a hybrid
cloud. In addition to the communication between the IT resources, the management

interfaces have to be integrated by a hybrid cloud. Apache Deltacloud [60] offers

the integration of different clouds behind one application programming interface. A

similar approach is taken by Apache Libcloud [61] an Jclouds [62] offering the

integration of multiple clouds in a programming library.

78 2 Cloud Computing Fundamentals

http://dx.doi.org/10.1007/978-3-7091-1568-8_6

Cloud Offering Patterns 3

In this chapter, the different cloud offerings found in clouds are covered regarding

the functionality they provide to customers and the behavior they display. After

the overview and general discussion of the impact of cloud computing properties

(see Sect. 1.1 on Page 3) on offering behavior, we describe different cloud

Fig. 3.1 Pattern map of cloud offerings

All figures published with kind permission of # The Authors 2014. See list of figures.

C. Fehling et al., Cloud Computing Patterns,
DOI 10.1007/978-3-7091-1568-8_3, # Springer-Verlag Wien 2014

79

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

environments (Sect. 3.3) as patterns. These patterns characterize the environments

created in different cloud deployment models (see Sect. 2.4 on Page 60) in more

detail. Especially, they give an overview of common combinations of the other

cloud offering patterns to form an IaaS (45) or PaaS (49) cloud. In the remaining

sections of this chapter, we cover cloud offerings combined to provide IaaS or PaaS
individually and differentiate between three general functionality-related offering

types: processing offerings, storage offerings, and communication offerings.
Processing offerings (Sect. 3.4) are used to execute workload. The required

functionality to execute workload may be provided as part of the cloud offering

or may be managed by the user through installation of custom software, i.e., on an

IaaS (45) offering. Therefore, compute resources can be offered according to

different cloud service models. Processing offerings host application functionality,

for example, in the form of virtual servers on the IaaS (45) level or an application

server platform on the PaaS level.

Storage Offerings (Sect. 3.5) can be used to store data in the cloud. Depending

on the service model according to which storage is offered, it can provide physical

hard drive storage resources on the IaaS (45) level. On the PaaS (49) level it may

provide storage accessed as network file storage (NFS), as Windows shared folders,

or table-centric storage such as a relational database management system.

Communication offerings (Sect. 3.6) are the third cloud offering type and can be

used to exchange information, for example, between the different applications and

their components hosted in a cloud as well as to exchange information with

applications residing outside of the cloud.

3.1 Overview of Cloud Offering Patterns

The cloud service models (see Sect. 2.3 on Page 42) describe the style in which IT

resources are offered by a cloud. In this chapter, we describe the properties and

behavior of these offerings in a pattern format. We chose the pattern format as it

allows us to describe the relevant properties of a cloud offering on an abstract

architecture level. Even though these offering patterns are not implemented by

developers, we argue that the pattern format makes different cloud offerings

comparable and captures the impact on the application architectures making use

of such offerings.

As shown in Fig. 3.1, the pattern map of this chapter starts by describing the

cloud environments offered according to the different cloud service models. We

cover an elastic infrastructure (87) offered as IaaS (45) and an elastic platform (91)

offered as PaaS. Both of the described cloud environments, elastic infrastructure (87)
and elastic platform (91) can guarantee availability of the provided service. Two

approaches are covered here, node-based availability (95) assuring availability

for individual hosted resources and environment-based availability (98) assuring

availability only for the offered service as a whole.

Processing offerings (Sect. 3.4) are used to handle the workload of a cloud

application. An elastic infrastructure can offer the functionality of a hypervisor (101)

80 3 Cloud Offering Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_2
http://dx.doi.org/10.1007/978-3-7091-1568-8_2

that hosts virtual servers of different customers. An elastic platform offers a higher

level execution environment (104). For example, an execution environment for Web

applications typically offers compute resources in the form of aWeb-server platform.

Uniform processing of large data sets can be handled by amap reduce (106) offering.
Storage offerings (Sect. 3.5) can be part of an elastic infrastructure or an elastic

platform. An elastic infrastructure may provide block storage (110) that can be

used similar to physical hard drives in virtual servers. An elastic platform may

handle binary large objects (BLOB) in a blob storage (112), a directory-centric

storage that can handle very large files, and a key-value storage (119) or relational
database (115) for table-centric data storage. The latter two offerings mainly differ

regarding data structure and data consistency. While relational databases are

configured with a data schema by which to structure the handled data, key-value
stores loosen the restrictions on data structures to be more flexible during runtime.

Each of these storage offerings may display eventual consistency (126) or strict
consistency (123). The corresponding patterns describe how data updates become

visible to clients accessing the storage offering concurrently.

Communication offerings (Sect. 3.6) are provided by an elastic infrastructure
and an elastic platform to enable data exchange between hosted applications and

external applications. In scope of an elastic infrastructure, the communication

offering is network hardware-centric and allows the use of virtual networking
(132) to interconnect hosted virtual servers. In scope of an elastic platform, we
cover asynchronous message-based communication, which is fundamental to

enable the cloud properties (see Sect. 1.1 on Page 3) in cloud-native applications.

A message-oriented middleware (136) offers message queues through which com-

munication partners may exchange asynchronous messages. Queues may behave

differently as described by the following patterns. Messages may be delivered

exactly-once (141) or at-least-once (144) to communication partners. Furthermore,

the delivery may be assured using transactions or timeouts as described by the

patterns for transaction-based delivery (146) and timeout-based delivery (149).

3.2 Impact of Cloud Computing Properties on Offering
Behavior

When revisiting the five fundamental properties of a cloud offering – access via
network, on-demand self-service, pay-per-use, resource pooling and rapid elastic-
ity – it becomes apparent that a cloud offering is a complex dynamic distributed

system. We discussed the basic functional behavior of different cloud service
models and cloud deployment types in the previous chapter. In addition to func-

tional behavior, a cloud offering has to ensure a certain set of non-functional

properties and the realization of these assurances used by a cloud provider may

again affect the functionality. Given the sheer size of the distributed systems

powering a cloud offering, cloud vendors are especially challenged by availability
and data consistency requirements in addition to enable the cloud computing

3.2 Impact of Cloud Computing Properties on Offering Behavior 81

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

properties. Given these circumstances, cloud providers have to determine the best

compromise between low costs and the guaranteed quality of non-functional

properties. In the following we give an overview where cloud providers commonly

accept trade-offs. The patterns covered in the remainder of this chapter then

describe in detail how these trade-offs affect the functional behavior of cloud

offerings.

Availability: a cloud offering is considered to be available if it is accessible via

the network and the provided functionality behaves as desired. Availability, there-

fore, means for a storage system that it is accessible by a client and provides correct

data. Driven by the need to offer on-demand self-service and pay-per-use, cloud

providers have to offer elastic infrastructures, platforms, applications and processes

that allow to dynamically provision and decommission resources. As a result the

cloud provider has to be able to add and remove resources on the respective layer of

the application stack rapidly. Resources have to be able to be started and stopped

automatically to achieve this rapid elasticity. In addition, the cloud provider has to

be able to deal with large amounts of IT resources while minimizing maintenance,

provisioning and decommissioning costs.

These requirements can only be met by a significant amount of computing power,

often realized using extremely large numbers of commodity servers as they are

cheap, easy to replace and can be managed with low overhead, because their

hardware is standardized. Such a setup is also referred to as warehouse-scale

machines by Barroso and Hölzle [24]. Google uses a similar architecture to handle

large numbers of search requests using commodity servers combined to large clusters

instead of high-end servers [63], but generic large-scale data centers build on

commodity hardware are also available. Vishwanath et al. [64] describe an approach

to ship those data centers ready-to-use in shipping containers hosting large number of

servers. These container data centers are never serviced, i.e., no individual server or

hard drive is ever replaced. Rather, failures are anticipated, the failing hardware is

deactivated and replaced by an already installed redundant component. If a certain

number of components has failed, the data center as a whole is replaced. In such large

systems, failures of individual hardware components, thus, occur constantly rather

than being an exception [65]. Google Fellow Jeff Dean [66] described the failure

rates in a new Google data center as follows:

In each cluster’s first year, it’s typical that 1,000 individual machine failures will occur;

thousands of hard drive failures will occur; one power distribution unit will fail, bringing

down 500 to 1,000 machines for about 6 hours; 20 racks will fail, each time causing 40 to 80
machines to vanish from the network; 5 racks will “go wonky,” with half their network

packets missing in action; and the cluster will have to be rewired once, affecting 5 percent
of the machines at any given moment over a 2-day span [. . .]. And there’s about a

50 percent chance that the cluster will overheat, taking down most of the servers in less

than 5 minutes and taking 1–2 days to recover.

To reflect this continuous presence of failures, availability assurances of many

cloud offerings often state that no guarantee of the availability of individual IT

resources is given, but the availability of the whole or a part of the offering is

guaranteed. In essence this means that individual nodes can fail all the time but new

82 3 Cloud Offering Patterns

nodes can be started to compensate for this failure. This considerably differs from

the assurance that a single node is guaranteed to not fail with a certain percentage.

When using cloud offerings, this behavior must be clear to customers and has to be

respected in the architecture of applications relying on such cloud offerings. Other

cloud offerings might guarantee a certain availability of individual nodes. Thus,

when deciding to use a cloud offering it must be known to the customers if the node-
based availability (95) pattern or environment-based availability (98) pattern is

implemented to be able to deal with the behavior accordingly.

Consistency: as with the availability discussion above, it is important to recall

that cloud storage offerings are distributed systems. Either, because of the required

size of the storage capacity or because of the need to guarantee a timely accessibil-

ity of the data most, cloud storage offerings are transparently implemented as

distributed, replicated data stores across multiple nodes. Consistency in this case

means that independent from which replica a customer reads, the same data is

returned.

Network partitioning tolerance: distributed systems are connected through a

network. In this network failures may occur resulting in lost connectivity between

IT resources of the distributed system. Network partition tolerance (or just

partitioning tolerance) for a storage offering comprised of multiple replicas

means that in case one or multiple replicas become separated from other replicas

due to problems in the connection network, thus, if network partitioning occurs, the

whole storage system shall still be available.

Dependencies among consistency, availability, and partitioning tolerance:
the distribution of IT resources hosting a cloud offering has a significant impact on

its properties and behavior. The basic theorem underlying the following discussion

is the CAP theorem [67]. The CAP theorem [67] states that out of the three

properties mentioned above – consistency, availability and partition tolerance –

any storage system can only maximize two at the same time. The efforts to ensure

these properties are, thus, competing. For example, if partitioning tolerance shall be

increased, the number of replicas accessed when a client retrieves data could be

reduced. In case of network partitioning, fewer replicas are now required making

the overall systems more robust. However, data in a different network partition may

have changed while a client is provided with data. Therefore, obsolete data may be

retrieved hindering high requirements on data consistency.

Further Reading: the CAP theorem has been researched

by Gilbert and Lynch in [67]. E. Brewer gives an overview

of the relationship between CAP, transactional ACID

properties (Atomicity, Consistency, Isolation, and

Durability), and BASE properties (Basically Available,

Soft state, Eventually consistent) in [68]. Ramakrishnan

covers a related Yahoo use case in [69]. Abadi discusses

the tradeoffs between different CAP designs in [70].

3.2 Impact of Cloud Computing Properties on Offering Behavior 83

To evaluate the interdependencies between the properties consistency, availability,

and partitioning tolerance in more detail consider the scenario depicted in Fig. 3.2.

Storage A, B, and C are three data replicas that implement a storage offering. In the

first user access, data item d1 is written by a customer of the storage offering and

changed to d1_updated. Transparently to the customer this update happens in replica

A. Thus, replica A now holds d1_updatedwhile B and C still hold the original version

of d1. When the customer now reads from the storage offering during the depicted

second and third access, either d1_updated or d1 is returned depending onto which

replica the access is directed. The storage offering is inconsistent. To make the storage

offering consistent, only updated data must be returned to the customer. This can be

done by reading and writing multiple replicas during an access while ensuring that the

sets of replicas accessed during these operations overlap. For example, the storage

offerings may update all three replicas during writes and reads data from only one

replica. Or it may read and write two replicas. Note that these accesses can still be

handled by the storage offerings transparently to the customer.

The strict consistency (123) pattern covers this approach to guarantee consis-

tency in more detail. However, ensuring consistency this way always requires

reading and/or writing from more than one replica depending on the setup, i.e.,

the ratio between replicas accessed during read and write operations. This reduces

availability, because the whole system becomes unavailable if not enough replicas

are available making it dependent on the availability of a large number replicas. If

consistency was not required, one replica would be sufficient to write and read. This

would also ensure partition tolerance as the customer could use a replica available

from his or her network segment. Therefore, guaranteeing consistency and partition

tolerance hinders guaranteeing availability.

Availability and partition tolerance can be increased when consistency is

relaxed. As long as one replica is available even during network partitioning the

whole system is still available as the customer can access the replicas available

Storage Offering

3 read

d1
d1_updated d1 d1

A B C

1

1 write 2 read
d1_updatedd1_updated d1

Fig. 3.2 Eventual

consistency scenario

84 3 Cloud Offering Patterns

from his network segment. However, this might include only replicas that do not

have current data because of the network partitioning. Therefore, consistency is

affected if availability and partition tolerance shall be increased. A provider can

guarantee so-called eventual consistency which means that once the network

partitioning is resolved and data can be exchanged between the different replicas

again, data is made consistent again. This approach is covered in greater detail in

the eventual consistency (126) pattern.
When guaranteeing consistency and availability, customers must read from

replicas that are not separated from other replicas because of network partitioning.

This is the case as otherwise consistency cannot be guaranteed as replicas have to be

kept in a consistent state negatively affecting partition tolerance.

Given these interdependencies between consistency, availability, and partitioning

tolerance not all of these properties can be maximized at the same time. However, in

large distributed systems, such as clouds, where network partitioning is likely to

occur, partitioning tolerance is often vital leaving the trade-off between availability

and consistency. Depending on the choice the cloud provider has made, the customer

of the storage offering either has to cope with reduced availability or relaxed

consistency. Instead, cloud provider may also use more reliable connection networks,

however, this is also likely to result in higher costs for higher levels of consistency.

Again, the two patterns strict consistency (123) and eventual consistency (126)

describe which choice the provider has made and how it affects customers and

their applications.

Consistency also influences communication cloud offerings. As messaging and

other communication offerings often depend on an underlying data store, the

properties of that data store influence the properties of the communication offerings

using it. A message-oriented middleware (136) can guarantee so-called exactly-once-
delivery (141), i.e., it will deliver some messages once and only once. Alternatively,

messages may be delivered more than once and, thus, the message-oriented
middleware guarantees at-least-once delivery (144). This delivery behavior is affected
by data consistency, because when a message has been delivered to a customer it is

removed from the underlying data store of the message-oriented middleware (136).

However, in case the data store is eventually consistent (126) a message may be

delivered more than once as it has not been removed from all replicas. Thus, whether

exactly-once delivery (141) or at-least-once delivery (144) can be guaranteed for a

communication offering often depends on the underlying architecture of the messag-

ing system and its data stores. The respective patterns describe the different behaviors

of a message-oriented middleware in more detail.

3.2 Impact of Cloud Computing Properties on Offering Behavior 85

3.3 Cloud Environments

When discussing cloud computing, hypervisors (101) are often named as one key

enabling technology. While this is certainly true, especially for IaaS (45) offerings, a

hypervisor and an elastic infrastructure (87) or elastic platform (91) are considerably

different. On the functional side a hypervisor typically offers hardware virtualization

functionality along with some management interfaces geared towards system

administrators. While a hypervisor often forms the basis and is offered as a part of a

cloud environment, an elastic infrastructure and elastic platform are enhanced with

functionality for self-service, pay-per-use pricing and rapid elasticity. The elastic
platform then moves away from the analogy of virtual servers towards middleware

runtimes that are offered to the customer. But not only the functionality of a hypervisor
and an elastic infrastructure or elastic platform is different, but also the definition of

availability in corresponding service level agreements. While a pure hypervisor is used

to virtualize existing servers and, thus, the availability of an individual server often

has to be guaranteed, in an elastic platform and also in elastic infrastructures the

availability of the whole environment is often emphasized over the availability of

individual nodes. These different availability assurances have been captured in the

node-based availability (95) and environment-based availability (98) patterns,

respectively. Customers must be aware of these different availability assurances and

have to design their applications accordingly as many IaaS offerings and, even more

so, PaaS (49) offerings often assure environment-based availability (98). Therefore,

customers cannot rely on the node-based availability (95) of individual nodes, such as
virtual servers or hosted applications components, as they could in a typical hypervisor-

based environment. To understand the implications as an application developer, it is

fundamental to be accustomed with the differences between a pure hypervisor-based
virtual server environment and an elastic infrastructure or elastic platform.

86 3 Cloud Offering Patterns

3.3.1 Elastic Infrastructure

Hosting of virtual servers, disk storage, and configuration of network

connectivity is offered via a self-service interface over a network.

How do cloud offerings providing infrastructure resources behave
and how should they be used in applications?

Context

If an application experiences periodic workload (29), once-in-a-lifetime workload
(33), unpredictable workload (36), or continuously changing workload (40), the

number of IT resources, such as servers, it requires differs greatly over time. To

adjust the size of this number of IT resources used by an application dynamically to

the currently experienced workload, IT resources have to be added to and removed

from an application’s runtime infrastructure within very short time frames. In scope

of the IaaS (45) service model, the applications’ runtime infrastructure, thus, must

support dynamic provisioning and decommissioning of virtual servers, disk storage

and network connectivity. The customer of an IaaS offering has to be provided with
functionality to handle provisioning of application components hosted on virtual

servers, increase or decrease the amount of storage, adjust the networking connec-

tivity, and monitor usage costs.

Solution

An elastic infrastructure provides preconfigured virtual server images and storage

as well as network capability that may be provisioned by customers. Based on

preconfigured images or through an upload of external server images, a customer

may create individual server images containing the hosted applications and appli-

cation components. This image management is fundamental to speed up the provi-

sioning of new virtual servers. Integration into communication networks is ensured

seamlessly by the provider, but may be configured by customers. Similarly, a

customer is able to book necessary storage resources. Monitoring information is

provided to the customer to inform about resource utilization required for traceable

billing and automation of management tasks. All this functionality is offered via a

self-service interface to be used by humans, automated management tools, and the

applications themselves that are hosted by the environment.

3.3 Cloud Environments 87

Result

Through the self-service interface or the API depicted at the top of Fig. 3.3, an

elastic infrastructure supports the dynamic allocation of virtual servers, storage and

network capability. Virtual servers are described by server images contained in an

image store. These images are comprised of a description of the hardware configu-

ration and hard drive images containing the operation system and additional

software, such as middleware and custom developed applications. Based on these

images, virtual servers may be provisioned and are then managed in a pool of

infrastructure resources depicted next to the image management in Fig. 3.3. These

virtual servers share common underlying hardware often managed by a hypervisor
(101). Additional to this hardware virtualization, a network management compo-

nent ensures that virtual servers are integrated and removed from the network

infrastructure during provisioning and decommissioning, respectively. This process

is completely automated to enable self-service interfaces and is one of the main

differentiating factors of an elastic infrastructure and a pure hypervisor-based
runtime infrastructure. A monitoring component collects information from virtual

servers, such as central processing unit (CPU) and memory utilization, amount of

data exchanged on the networking level etc. This information is used by the billing

component and may also be extracted by the customer. Customers require this

information to make manual or automated scaling decisions for the deployed

applications. Monitoring ensures a common perception of virtual server utilization

and, therefore, forms the basis for pay-per-use billing models as well as elasticity.

Fig. 3.3 Components of an

elastic infrastructure

88 3 Cloud Offering Patterns

Variations

Many elastic infrastructures are built upon virtualization environments provided by

one or more hypervisors (101). This is due to the fact, that server virtualization

enables the automation of provisioning tasks and decommissioning tasks. However,

these tasks may also be automated for the non-virtualized environments to allow the

elastic management of physical servers without an additional virtualization layer.

However, in this scope, the number of servers that may be provisioned is bound

directly to the number of available physical servers and these physical servers are

also not shared between different customers. Therefore, such offerings tend to

target a customer group that requires higher performance or privacy, i.e., through

the more direct access to hardware and the lack of hardware sharing.

Related Patterns
• Hypervisor (101): as mentioned above, hypervisors are used by an elastic

infrastructure to abstract physical hardware and decrease provisioning and

decommissioning times. It is the common processing offerings of an elastic
infrastructure.

• Block storage (110): the common storage offering of an elastic infrastructure

provides centralized storage to be accessed by virtual servers similar to local

hard drives. The behavior of these storage offerings are described in greater

detail by the block storage (110) pattern.
• Virtual networking (132): the hardware virtualization introduced by a hypervisor

(101) can be extended further to include networking resources that enable the

connectivity between virtual servers of an elastic infrastructure. The virtual
networking pattern, therefore, describes the common communication offering of

an elastic infrastructure.

• Blob storage (112): this storage offering handles large files, so called binary

large objects (blob) in a directory-based fashion. It is often used internally by an

elastic infrastructure to realize the image storage depicted in Fig. 3.3.

• Watchdog (260): if the elastic infrastructure offers environment-based availabil-
ity (98), a watchdogmay be used to analyze the monitoring information provided

by the application hosted on the elastic infrastructure. Based on this analysis it

detects failing resources and uses the interfaces of the elastic infrastructure to

automate their replacement i.e., the decommissioning of failing resources and

the provisioning of replacements.

• Management patterns (Chap. 5): all management patterns rely on a management

interface to automate management tasks. The elastic infrastructure is a means to

provide such an interface.

• Elasticity manager (250), elastic load balancer (254), and elastic queue (257):

these require an elastic infrastructure or an elastic platform (91) as underlying

infrastructure. They determine the number of required application component

instances to handle experienced workload. Then, they use the interface of the

elastic infrastructure to automatically provision application component instances.

3.3 Cloud Environments 89

http://dx.doi.org/10.1007/978-3-7091-1568-8_5

Known Uses

There are many hosting providers offering virtual servers in an elastic infrastructure,
for example, the Amazon Elastic Compute Cloud (EC2) [18]. Rackspace [19] also

offers a similar service that is based onOpenStack [35], an open source implementation

of the elastic infrastructure pattern. The mentioned variation managing physical

hardware provisioning as an elastic infrastructure in order to avoid the limitation of

the hypervisor (101) is offered by baremetalcloud [71]. T-Systems with their Dynamic

Services for Infrastructure (DSI) [34] and other providers offer elastic infrastructure as
virtual private clouds (66) with both, environment-based availability (98) for develop-
ment and test and node-based availability (95) for higher-end production systems.

90 3 Cloud Offering Patterns

3.3.2 Elastic Platform

Middleware for the execution of custom applications, their communication,

and data storage is offered via a self-service interface over a network.

How do cloud offerings providing execution environments behave
and how should they be used in applications?

Context

One of the fundamental cloud properties introduced in Sect. 1.1 on Page 3 is the

sharing of resources among a large number of customers to leverage economy of

scale. If many of the applications hosted by customers rely on the same operating

systems and middleware, customers should also share these resources to avoid

redundant deployments of the same middleware products. Extending resource

sharing between customers to the operating systems and middleware, thus,

increases the beneficial effects of economies of scale as the utilization of these

resources can be increased. Additionally, homogenization and standardization of

the middleware-level is increased reducing the required skill-set and application

management efforts. Customers shall, therefore, be enabled to deploy application

components on a shared hosting environment that is provided according to the PaaS
(49) service model.

Solution

Application components of different customers are hosted on shared middleware

provided and maintained by the provider. Customers may deploy custom application

components to this middleware using a self-service interface for component

management as seen at the top of Fig. 3.4. This middleware is unified for all customers

regarding the versions of used operating systems and other software as well as taken

security measures, user directories, performance optimized configuration etc. This

unification enables resource sharing and an automation of certain management tasks

on the provider side, for example, provisioning of applications, update management

etc. If the application components are developed in a certain fashion (see related

patterns) the provider may also handle elastic scaling or resiliency management in

case a hosted application fails. The provider ensures isolation between the deployed

components to insure that the customers are not affected by the behavior of each

3.3 Cloud Environments 91

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

other’s deployments. Furthermore, the provider offers certain platform services that

can be used by customers for data storage and communication between components.

Monitoring information is provided to customers to inform them about utilization

caused by their deployments and to bill them based on the monitored use.

Result

By providing an execution environment (104) via a self-service interface or an API,
the provider enables customers to deploy application components on the same

shared hosting environment. This elastic platform hosts and executes the deployed

custom applications and can provide common platform offerings. These platform

offerings subsume functionality for processing, communication and storage as well

as logging, security, application management and monitoring shared by all

deployed applications of all customers. The behavior of the provided processing

functionality is described in greater detail by the execution environment (104)
pattern. The behavior of communication functionality and storage functionality is

described by communication offerings (Sect. 3.6) and storage offerings (Sect. 3.5),

respectively. Pay-per-use billing is realized regarding accesses to the deployed

components, data traffic, or messages exchanged etc. Thus, the unit of payment is

typically related to the type service provided by the offerings of an elastic platform.
Scaling and other management tasks for the deployed application components can

also be handled by the provider without the user noticing by dynamically provi-

sioning or decommissioning IT resources on which the platform is hosted. This,

however, often demands that component implementations follow certain architec-

tural principles. For example, they may have to be implemented as stateless
components (171), e.g. relying on external state stored in a provider-supplied platform
service or by exchanging state in application messages (so-called REST [72] style).

Fig. 3.4 Components of an

elastic platform

92 3 Cloud Offering Patterns

The behavior of these management functionalities offered by the provider may be

configured by the customer to adjust how quickly a provider shall react to different

workload requirements, what maximum number of resources the application may use

etc. The monitoring information about deployed applications is provided to the

customer and billing is performed regarding the number of provisioned components,

the number of messages exchanged by them, and the amount of data these components

store using platform services. The notion of virtual servers, operating systems or

middleware instances is commonly completely hidden from the user of the elastic
platform.

Variations

As a variation, virtual servers may still be visible to the customer, but the operating

system and middleware of these servers is managed by the provider of the elastic
platform. Customers may often influence the behavior of this automated manage-

ment, for example, by specifying the point in time when updates and patches are

applied. This variation results in different payment models as if virtual servers are

invisible to customers: pricing is more similar to that of an elastic infrastructure (87)
where virtual servers, memory, and bandwidth use are billed. In this scope, scaling

configurations undertaken by the customer may also incorporate properties of the

virtual servers, such as CPU and memory utilization.

Related Patterns
• Execution environment (104): processing functionality of the elastic platform is

provided by an execution environment that hosts application components and

subsumes common functionality required by them. In addition to this processing

offering, the elastic platform commonly provides a set of communication

offerings (Sect. 3.6) and storage offerings (Sect. 3.5). These are described in

detail by the following patterns:

• Message-oriented middleware (136): according to this pattern, a provider may

offer message queues to enable deployed application components to exchange

messages with each other and applications outside of the elastic platform.
• Blob storage (112): this storage offering may be used by deployed application

components to store large data elements.

• Key-value storage (119) and relational database (115): these storage offerings can
be used by deployed applications to store large amounts of table-centric data.

Elastic platforms often require hosted applications to implement certain patterns,

for example, to handle certain management tasks for the customer:

• Distributed application (160): cloud applications are generally componentized to be

distributed among different resources. This significantly simplifies management

tasks, such as scaling, failure resiliency, and load-balancing. The distributed
application pattern covers different approaches for this decomposition and describes

3.3 Cloud Environments 93

how the decomposed application components may be combined to a cloud

application

• Stateless component (171): if deployed components do not have an internal state

but completely rely on provider-supplied storage offerings, their handling by an

elasticity management process (267) and resiliency management process (283)
is significantly simplified.

• Idempotent processor (197): messaging offerings often assure at-least-once
delivery (144) of messages. To cope with such message duplicates, a custom

application component should implement the idempotent processor pattern.

Known Uses

Amazon Elastic Beanstalk [53] offers an elastic platform providing Apache Tomcat

[73] as provider-supplied and provider-managed middleware. Scalability is enabled

automatically and relies on utilization information obtained from virtual servers on

which Apache Tomcat is hosted. Windows Azure [52] is also an elastic platform
that maintains the notion of virtual servers, but provides pre-configured images

containing different Windows versions. These can also be updated automatically

once they are deployed by a customer. Google App Engine [21] completely hides

virtual servers from the user and allows the deployment of Python and Java

applications which is then automatically scaled for customers.

Other offerings of an elastic platform provided as PaaS (49) are Amazon’s

Simple Queue Service (SQS) [38] which provides messaging. Billing is related to

the number of messages processed and elasticity is handled transparently to the

customer. When building private cloud (66) offering an elastic platform, products
such as OpenStack [35] often include storage offerings that can then be provided as

PaaS. Another example is WSO2’s Stratos open source implementation [74], which

offers elastic multi-tenant aware runtimes for web applications, workflows and an

elastic enterprise service bus (ESB) [11].

94 3 Cloud Offering Patterns

3.3.3 Node-Based Availability

A cloud provider guarantees the availability of individual nodes, such as

individual virtual servers, middleware components or hosted application

components.

How can providers express availability in a node-centric fashion, so
that customers may estimate the availability of hosted applications?

Context

A provider offers an elastic infrastructure (87) or an elastic platform (91) on which

customers may deploy application components. Customers of this offering need to

estimate the availability of these applications to match their requirements. The

provider needs a means to express the availability service level agreements for the

offerings from which the customer may then compute the availability of the hosted

application. Therefore, the provider has to specify two properties for offerings. First,

conditions are defined that have to be fulfilled by an available offering. Second, the

timeframe needs to be expressed for which the provider assures this availability.

Solution

The provider assures availability for each hosted application component or the

provided virtual server, in case of an elastic platform (91) or elastic infrastructure
(87), respectively. A component or virtual server is defined to be available if it is

reachable and performs its function as advertised, i.e., it provides correct results.

The timeframe during which this availability is assured is often expressed as a

percentage. An availability of 99.95 % means that a hosted component will be

available during 99.95 % of the time it is hosted at the provider. If an application is

comprised out of multiple application components, customers may compute the

availability of the overall application by multiplying the individual availability

ensured for each component as depicted in Fig. 3.5.

Result

Through the expression of availability for individual nodes (virtual servers,

middleware components, or application components – depending on the type of

3.3 Cloud Environments 95

offering) the customer of an offering can determine the assured availability of a

hosted application. In case this assured availability is high, the hardware employed

by the cloud provider often incorporates redundant hardware components to assure

its functioning. The environment, thus, monitors its own state to detect failures. In

case of failure, the provider provisions a replacement for the faulty hardware. In case

of a lower assured availability, the customer may have to incorporate such redun-

dancy and failure replacement on the application level by deploying multiple

instances of the same application components. In either case, monitoring information

about deployed application components is provided to the customer. This informa-

tion may contain utilization created by the application components, such as use of the

central processing unit (CPU), memory, and disk space. While this information can

be a first indicator for the runtime behavior of the applications component, proper

functioning of an application component requires checks on the application level,

i.e., these checks have to be incorporated in the implementation of the application

component. Two common approaches used for this purpose are accessing the

application functions with test data to evaluate the results and to have the application

component send periodic heartbeats, i.e., the application component notifies the

application monitoring after certain time intervals that it is still operational. Cloud

providers often support such efforts through configurable checks that are performed

periodically. For example, the provider may access a Web site offered by a hosted

application periodically to assure the application is reachable. Furthermore, cloud

providers may offer libraries to be used in an application component’s implementa-

tion to send heartbeats to the provider-based monitoring infrastructure. If such

functionality is not offered by a cloud provider, the monitoring of the health status

of an application has to be implemented individually in each application.

Related Patterns
• Watchdog (260): in case the availability assured by the provider is insufficient to

meet an application’s requirements, awatchdogmay be used tomonitor and replace

application components. This management component, therefore, collects the

above mentioned health information and heartbeats from application components,

detects faulty application components, and replaces them automatically.

Fig. 3.5 Exemplary node-based availability

96 3 Cloud Offering Patterns

• Resiliency management process (283): this pattern describes the process

followed to replace failing components. It can be implemented by the above

mentioned watchdog (260), in other management component, or may even by a

human task.

Known Uses

Many web hosting providers assure availability in a node-centric form by stating

the percentage that a hosted application is available in a given year. The same is

done commonly for physical servers that are bought to be hosted in private data

centers.

Hohpe and Woolf [1] cover different patterns for health monitoring in message-

based applications that can also be used in scope of cloud applications using a

message-oriented middleware (136): a control bus is comprised of message queues

used dedicatedly for configuration messages and, especially, for heartbeat

messages. This assures that heartbeat messages are not delayed by other messages

processed by the application. A test message may be send to an application

component to assure it processes it correctly. By using a wire tap, messages that

are being processed by an application may be examined without interfering with

application functionality. Finally, a dead letter channel and invalid message chan-
nel may be used to collect messages that a message-oriented middleware (136)

cannot deliver or that are formatted incorrectly, respectively. This enables the

collection of erroneous messages to detect faulty application behavior.

Further Reading: further assurances relevant for the

expression of availability regards the duration of

unavailability and the number of times a failure has to be

expected. These factors are expressed in form of mean time
between failures (MTBF), the average time that a component

or virtual server is available between two consecutive

failures, and mean time to recovery (MTTR), the time it

takes to recover a failed component to become available

again after a failure. Detailed information on these and

other system properties as well as their computation is

given by Wasson [75]. Leymann and Roller [76] discuss

hot pools – duplicate instances of application components

or processes – in greater detail. Especially, they describe

how to calculate the mean time between failure and mean

time to recovery of such hot pools.

3.3 Cloud Environments 97

3.3.4 Environment-Based Availability

A cloud provider guarantees the availability of the environment hosting

individual nodes, such as virtual servers or hosted application components.

How can providers express availability in an environmental-centric
fashion, so that customers may estimate the availability of hosted
applications?

Context

A cloud provider offers an elastic infrastructure (87) or an elastic platform (91) on

which customers may deploy application components. The availability of this

environment has to be expressed so that customers may match their requirements.

Therefore, the provider defines the conditions to be fulfilled when the offering is

available as well as gives the timeframe for which this availability is ensured. A

customer then needs to incorporate these conditions in the deployed application to

achieve the required availability.

Solution

The provider assures availability for the provided environment, thus, for the

availability of the elastic platform or the elastic infrastructure as a whole as

depicted in Fig. 3.6. Especially, there is no notion of availability for individual

application components or virtual servers deployed in this environment as is the

case for node-based availability (95). Instead, availability is often expressed

regarding the availability of the overall set of the deployed nodes, i.e. some of

them are available, as well as the availability of the management interface of the

elastic platform (91) or elastic infrastructure (87). Customers of such an offering

are empowered to react to failures by providing monitoring information about the

environment and the deployed nodes.

Result

Environment-based availability is often used for cloud offerings comprised of

commodity hardware. The cost of commodity hardware has been decreasing during

the past years while its performance increased drastically. When combined in large

numbers, commodity servers can, therefore, become eligible to replace high

98 3 Cloud Offering Patterns

available solutions [24, 63, 64], while decreasing resource costs enabling the

provider to increase the addressable customer market. Therefore, instead of aiming

for high node availability, the environment is designed in a high available fashion

and the customer is provided with necessary monitoring information to detect and

address node failures in the deployed application. Therefore, in case a provider uses

an environment-based availability assurance, the customer becomes responsible to

assure the desired availability by incorporating failures in application architectures

and their runtime management. Especially, the overall availability of the application

cannot be computed from the availability of individual application components as is

the case for node-based availability (95) but instead depends on the automated

management processes coping with failures. Themeasures taken by cloud customers

to assure availability of application under these conditions are the same taken in

scope of node-based availability (95) assurances that are insufficient for the

requirements of an application. Therefore, a cloud application hosted in an environ-

ment assuring environment-based availability (98) should check for correct opera-

tion of application components by accessing provided functionality and periodic

heartbeats send by the application components, i.e., notifications that they are still

operational. For this purpose, cloud providers often have ready-to-use functions to

access an application periodically and evaluate the results. For example, a cloud

provider may access a Website provided by the application to assure it is reachable.

Furthermore, providers often offer libraries to be used in the application component

implementation to easily send heartbeats to the provider-supplied monitoring func-

tionality. This health information may then be evaluated by a watchdog (260) that

detects faulty application behavior and replaces failed application components.

Related Patterns
• Public cloud (62): environment-based availability can often be found in public

clouds.

• Watchdog (260): this pattern describes a management component that handles

the evaluation of the monitoring information and corrective actions. It also

describes how failing application components can be replaced more easily by

implementing the stateless component (171) pattern and communicating via a

message-oriented middleware (136).

Fig. 3.6 Exemplary

environment-based

availability assurances

3.3 Cloud Environments 99

• Resiliency management process (283): this pattern describes the steps that

should be executed generally if a component fails. Especially, it describes how

systems managers or automated management processes should interact with the

management interfaces of used clouds.

Known Uses

Many virtual servers of public IaaS clouds are offered according to environ-
ment-based availability, thus, the implications on the cloud customer and the

runtime management have to be evaluated carefully. For example, by time of

this writing Amazon guarantees in its service level agreement an availability of

virtual servers that are part of its Elastic Compute Cloud (EC2) of 99.95 %

during a service year of 365 days [77]. As this assurance is environment based

availability, this does not mean that a single virtual server instance will be

available 99.95 % during this time period. Instead, unavailability is defined as

the state when all running instances cannot be reached longer than 5 min and no

replacement instances can be provisioned. Furthermore, the user has to make

sure that redundant instances are provisioned in multiple geographically

distributed “availability zones”.

If a messaging application is hosted in an environment assuring environment-

based availability, the same patterns introduced by Hohpe and Woolf [1] can be

used as mentioned in the known uses section of the node-based availability (95)

pattern to ensure availability on the application level. A control bus provides

message queues exclusively used for configuration of application components and

heartbeat messages to ensure that such messages are not delayed by messages

processed by the application. Test messagesmay be sent to application components

to assure their correct functioning. A wiretap can be used to evaluate messages that

are being processed without interfering with the application. Finally, a dead letter
channel and invalid message channel may be used to collect messages that cannot

be delivered or are formatted incorrectly indicating a faulty component.

3.4 Processing Offerings

Processing offerings are used by customers to execute their workloads in the

cloud. To do so, customers may deploy their own application components on

the cloud provider’s infrastructure. The different cloud service models covered

in Sect. 2.3 on Page 42 may be used in this scope to handle the workload of an

application. In this section, we cover the processing offerings provided as IaaS
(45) and PaaS (49) in greater detail regarding their behavior, how to interact

with them, and what has to be considered when using them in applications.

100 3 Cloud Offering Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_2

3.4.1 Hypervisor

To enable the elasticity of clouds, the time required to provision and decom-

mission servers is reduced through hardware virtualization.

How can virtual hardware that has been abstracted from physical
hardware be used in applications?

Context

Deploying applications directly on physical servers presents several drawbacks. It

makes the application directly dependent on physical hardware failures. It may lead

to unavailability if the hardware has to be re-configured, for example, for updates or

replacement. And, most significantly in the area of cloud computing, it hinders the

sharing or resource pooling of physical hardware between different customers, one

of the cloud computing properties in the NIST definition [3], covered in Sect. 1.1 on

Page 3. If multiple applications are deployed on the same physical server they may

have to consider the other applications in their configuration. For example, if

applications require the same network ports, access the same directories in the

local file system etc. This sharing of common underlying physical hardware

between different applications and their components shall, therefore, be simplified

while also decoupling the application from the limitations of a physical server.

Solution

A hypervisor abstracts the hardware of a shared physical server into virtualized

hardware. On this virtual hardware, different operating systems and middleware are

installed to host applications sharing the physical server while being isolated from

each other regarding the use of physical hardware, such as central processing units

(CPU), memory, disk storage, and networking.

Result

Two types of hypervisors are differentiated by Goldberg [78–80] as depicted in

Fig. 3.7. A type 1 hypervisor directly accesses physical hardware which it abstracts
to provide virtual hardware to hosted virtual servers. A type 2 hypervisor instead

3.4 Processing Offerings 101

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

requires an operating system to be installed on the physical hardware. The

hypervisor is then installed as a regular application in this operating system. In

either case, the hypervisor uses the physical hardware to provide multiple

virtualized hardware components. For example, the physical memory of a server

may be split up into separate partitions, which are accessed by hosted virtual

servers. The same is the case for virtual network cards that are mapped to fewer

physical network cards shared by the virtualized servers. This setup forms two

significant implications on the hosted operating systems that an application devel-

oper has to be aware of. First, the diversity of virtual hardware is significantly

smaller than physical hardware, for example, the number of network card chipsets

may be reduced. Therefore, even though special hardware may be installed in the

host machine it may be abstracted to virtual hardware behaving very differently and

offering significantly less functionality. This may, for example, be problematic if

the guest operating system requires very specific hardware. Even though such

hardware may be present in the host system, it may be abstracted to very different

virtual hardware with which the guest cannot interact. Second, the style how guest

operating systems access the virtual hardware may be very different depending on the

hypervisor and its configuration: they may either access the virtualized hardware or

may use functionality of the hypervisor to access the physical hardware directly,

which is called para virtualization. In the latter case, the operating system is,

therefore, tightly integrated with the hypervisor and may be rendered dysfunctional

if moved to a different hypervisor. Such attempts to migrate virtual servers can

additionally be hindered as hypervisors use different storage formats for virtual

servers, different configuration formats etc.

All hypervisors have in common that the virtual servers are stored as files on the

host system. Therefore, virtual servers are only loosely coupled on the physical

Physical
Hardware

Hard Drive Memory Network

Host OS

Hypervisor Type 1 Hypervisor Type 2

Guest OS

Virtual
Hardware

Guest OS

extensions

Virtual
Hardware

Guest OS

Virtual
Hardware

Guest OS

extensions

Virtual
Hardware

CPU

Fig. 3.7 Hypervisor types

using virtualization and para-

virtualization

102 3 Cloud Offering Patterns

hardware. Moving them from one physical server to another one is reduced to

copying files containing the virtual server configuration and virtual hard drives.

This hardware virtualization and decoupling is fundamental to in cloud computing.

It enables quick provisioning and decommissioning of cloud resources (virtual

servers) as the necessary tasks may be automated and no physical alterations,

such as re-wiring of networking cables are required in data centers. Furthermore,

it allows cloud customers to share a common hardware infrastructure enabling the

exploitation of economies of scale.

Related Patterns
• Elastic infrastructure (87): a hypervisor forms the basis for the dynamicity of

virtual server provisioning. This functionality is offered via self-service

interfaces by an elastic infrastructure.

• Elastic platform (91): even though the notion of virtual servers is often hidden

from customers of elastic platforms, hypervisors may still form the basis on

which providers create their offering.

Known Uses

Hardware virtualization using hypervisors has been employed for a long time in

mainframes, for example, IBM System Z [81]. VMware offers hypervisors for

Desktop PCs [82, 83] and servers [54]. Xen [84], Hyper-V [85], KVM [86], and

VirtualBox [87] are also virtualization environments that offer the functionality of a

hypervisor.

Side Note: hypervisors pose significant implications on hosted

applications. Especially, applications once deployed on a specific

hypervisor may be difficult to move to a different hypervisor. As

hypervisors form the basis for many clouds we included this pattern.

Even though a hypervisor enables rapid provisioning and

decommissioning of resources, it often lacks the following cloud

properties described in Sect. 1.1 on Page 3: a hypervisor does not
necessarily provide a self-service interface to customers. Thus, it

does not necessarily ensure self-service on-demand provisioning

and decommissioning of resources. Also, offerings employing this

pattern often provide long-term contracts and no usage-based billing.

We included this pattern to distinguish between cloud providers in

terms of the NISTCloudDefinition [3] from similar products. Also, a

hypervisor often has to be established as underlying infrastructure for
a private cloud (66) and is used in on premise data centers that may be

part of a hybrid cloud (75).

3.4 Processing Offerings 103

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

3.4.2 Execution Environment

To avoid duplicate implementation of functionality, application components

are deployed to a hosting environment providing middleware services as well

as often used functionality.

How can multiple application components share a hosting
environment efficiently?

Context

Whenever multiple applications or application components share one physical or

virtual server as runtime environment, they often use similar functions, for exam-

ple, to access networking interfaces, display user interfaces, access storage of the

server etc. This effect is event increased, if the applications are developed in a

similar fashion, i.e., they use the same programming language, middleware, and

implement the same architectural patterns, such as those of this book, patterns for

enterprise integration described by Hohpe and Woolf [1], object oriented

applications described by Gamma et al. [2], or application architecture patterns of

Buschmann et al. [14]. In this case, each application implements similar

components that could be shared with other applications. Sharing such common

functionality between applications would result in a better utilization of the

environment.

Solution

Common functionality is summarized in an execution environment providing

functionality in platform libraries to be used in custom application implementations

and in the form of the middleware part of the application stack described on Page 43

in Sect. 2.3. The environment, thus, executes custom application components and

provides common functionality for data storages, communication etc. As depicted

in Fig. 3.8, this execution environment abstracts from operation system functions

and provides abstract functions for multiple applications or application

components. Platform libraries and common functionality, furthermore, are only

deployed and instantiated ones and can then be shared between all application

concurrently running in the execution environment.

104 3 Cloud Offering Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_2

Result

By sharing common functionality provided by platform libraries, resources are used

more efficiently. Custom applications may rely on platform functionality making

them easier to develop and test as less custom functionality has to be implemented

by developers. Through homogenization of the execution environment regarding
the provided functionality and used middleware, supported programming languages

etc., applications can be moved easier between different installations of a platform.

Related Patterns
• Elastic platform (91): additional to the provided execution functionality, execu-

tion environments may be offered as a service, referred to as PaaS (49). These

environments commonly provide further properties, such as a self-service inter-

face, described by the elastic platform (91) pattern.

• Hypervisor (101): this pattern describes another concept to share resources

between multiple applications by hosting multiple virtual servers on one physi-

cal server. It, therefore, introduces a similar sharing of resources on the virtual

hardware layer, while an execution environment shares the middleware layer

among applications.

Known Uses

Many programming environments, such as the JAVA Virtual Machine [88], pro-

vide an execution environment with common functionality that is shared by

applications. More complex middleware environments are provided by application

servers, such as JBoss [89] or Apache Tomcat [73]. In the cloud, there is a multitude

of platforms available for different programming languages, such as JAVA, Python,

or custom languages, for example, Google App Engine [21], Amazon Elastic

Beanstalk [53], Salesforce’s Force platform [44], or VMware CloudFoundry [90]

as well as WSO2s Stratos Live [39].

Fig. 3.8 Execution

environment in an

application stack

3.4 Processing Offerings 105

3.4.3 Map Reduce

Large data sets to be processed are divided into smaller data chunks and

distributed among processing application components. Individual results are

later consolidated.

How can the performance of complex processing of large data sets
be increased through scaling out?

Context

Cloud applications often have to handle very large amounts of data for various

reasons. For example, cloud applications may have very large user groups and

clouds are destined for workload that is too large to be handled in a static environ-

ment. Furthermore, the storage offerings (Sect. 3.5) found in the cloud, for example

key-value storage (119), are designed to be scaled out to increased performance and

scalability at the expense of support for complex and expressive queries. This

design leads to larger data sets being returned to handling application components.

These components, thus, have to cope with large data sets efficiently. As distributed
applications (160) are designed to scale out, data processing should be distributed

among multiple application component instances in a similar means. Afterwards,

results of these distributed components have to be consolidated.

Solution

A large data set to be processed is split up and mapped to multiple application

components handling data processing. During the mapping filtering functions are

often used to ensure that only data is handled in the following processing that has

met certain criteria. Data processing components simultaneously execute the query

to be performed on the assigned data chunks. Afterwards, the individual results of

all processing components are consolidated or reduced into one result data set.

During this reduction, additional functions, such calculations of sums, average

values etc. may be used.

To be efficiently handled by map reduce, data generally has to display three

characteristics. First, it needs to be split up into subsets with no interdependencies

among the resulting sets. Second, the query needs to be executable for each subset

of data independently without the need of query processors to interact. Third, each

individual query needs to return a result that can be consolidated afterwards.

106 3 Cloud Offering Patterns

Result

Figure 3.9 exemplarily depicts the flow of data during the map step and the reduce
step. In this example, an elastic infrastructure (87) is used as indicated by the

application components hosted on servers. Alternatively, an elastic platform (91)

could also be used to host components or the complete map reduce functionality can

be provided by the platform and the user merely has to provide data and query

statements. The example considered here uses a key-value storage (119) as source
of information, but the data to be queried may also come from other sources, i.e.,

from large text files or large tables in relational databases (115). One application

component divides the data to be queried into smaller data chunks that it distributes

among multiple distributed querying components. This task is referred to as

mapping. All components perform the query on the data assigned to them and

return a result. This result is again reduced to one consolidated query result by

another application component. In Fig. 3.9, the reducing component is separate, but

it can also be the same as the component dividing the data. During the reduction of

results a merge of the data can be performed, for example, the table entries

matching the query, in Fig. 3.9, are merged. More complex operations are also

possible. Consider for example, that the distributed query shall count the number of

occurrences of a certain entry in a large table retrieved from the key-value storage
(119). This table is split up and distributed among the querying components that

count the occurrences in part of the table assigned to them and return the number of

matching entries as their result. These individual results are summed up by the

reducing application component to obtain the final result. In practice, the map
reduce pattern can be implemented manually, but there are several ready-to-use

implementations (see known uses). Often, these map reduce frameworks enforce

the use of a certain programming language or programming style that enables the

automated distribution of developed code among a distributed map reduce environ-

ment. In the known uses section, we cover some of these environments that can

often be used according to the cloud service models covered in Sect. 2.3 on Page 42

as well.

Fig. 3.9 Elastic map reduce using key-value storage

3.4 Processing Offerings 107

http://dx.doi.org/10.1007/978-3-7091-1568-8_2

Variations

In general, map reduce is used to query large amounts of weakly structured data for

analysis purposes. Examples are the analysis of server logs to determine user access

statistics or the analysis of order information to determine popular products.

Conceptually, the underlying approach is to divide and conquer, also used by

recursive search algorithms [91]. The data to be queried in a distributed fashion

does not necessarily have to be in a table form, as depicted in Fig. 3.9. Many of the

ready-to-use map reduce frameworks also expect table-centric, key-value structured

or simply text based data, but the architectural concept to divide data and then process

it in smaller parts can be applied to other data formats as well. Therefore, the map

reduce pattern can also be used to distribute other types workload among compute

nodes, such as physics simulations, video file conversion, text recognition in pictures

etc. Especially, these workloads may not be data-centric, but may consider any type

of processing.

Related Patterns

In messaging systems, a similar pattern exists that distributes the handling of large,

complex messages among several compute nodes, called scatter–gather defined by
Hohpe and Woolf [1]. The map reduce pattern is, furthermore, likely to be com-

bined with the following patterns:

• Watchdog (260): if the used runtime environment assures environment-based
availability (98), resources may possibly fail during query processing. A watch-

dog supervises such resources to replace them in case of failures. If combined

with map reduce, the mapping component and the watchdog should work

together closely, i.e., the watchdog should inform the mapping component

about failures, so that the mapping component can restart the query on the

corresponding data subset.

• Message-oriented middleware (136): query processing components should be

triggered by using asynchronous message-based communication enabled by

message queues provided by a message-oriented middleware. If multiple

processing components retrieve messages from the same queue, the mapping

component does not have to load balance workload among processing components

itself. Hohpe and Woolf [1] describe such a setup as competing consumer.
• Transaction-based processor (201) and timeout-based message processor (204):

if exactly-once delivery (141), or at-least-once delivery (144) is supported by

the message-oriented middleware (136) is assures that messages are delivered

successfully. However, they may still be lost, during their processing. This is,

especially, critical, if the processing components using by the map reduce pattern
need a lot of time to compute their output. A message-oriented middleware can

support different styles of interaction to read messages transactional or acknowl-

edge their successful read as described by transaction-based delivery (146) and

timeout-based delivery (149) patterns, respectively. The assurance that messages

108 3 Cloud Offering Patterns

are processed successfully can be extended by processing components through the

implementation of the transaction-based processor (201) pattern or the timeout-
based message processor (204) pattern.

Known Uses

Dean and Ghemawat describe map reduce in general and cover its implementation

by Google [92]. Varia [93] covers a practical example application for map reduce

that crawls websites. This example application is based on Amazon’s Elastic

MapReduce [94] offering that provides the environment for map reduce according

to PaaS (49). Thus, customers may deploy their own map reduce queries which

are then executed on the Amazon runtime. The Amazon offering is based on the open

source framework implementing map reduce, Apache Hadoop [95]. Being open

source, this software may also be hosted in private clouds (66). Map reduce func-

tionality is also part of Windows Azure [96] and Google App Engine [21]. Another

open source implementation of map reduce that includes native support for JSON

[97] documents is part of the Apache CouchDB [98] key-value storage (119).

3.5 Storage Offerings

This section discusses cloud storage offerings. Different types of cloud storage

offerings exist that are offered in cloud environments (Sect. 3.3). They can also be

characterized by the cloud service models introduced in Sect. 2.3 on Page 42.

Block storage (110) offers (virtual) hard drives as IaaS (45) often used as virtual

hard-drives for virtual servers offered in an elastic infrastructure (87). Blob storage
(112), relational database (115) and key-value storage (119) offer different types of
elastic storage according to PaaS (49). In these offerings the underlying hard-drives
(or other physical storage mediums) are hidden from the customer. Often, these

offerings are tightly integrated with an elastic infrastructure (87) or elastic platform
(91) offering. The following two patterns, strict consistency (123) and eventual
consistency (126), describe how cloud providers handle different requirements

regarding storage availability, consistency, and partitioning tolerance (CAP).

According to the CAP theorem [67] only two of these properties may be maximized

for a storage offering, as described on Page 83 in Sect. 3.2. Therefore, a customer

has to consider the requirements of an application carefully prior to selecting a

storage offering.

3.5 Storage Offerings 109

http://dx.doi.org/10.1007/978-3-7091-1568-8_2

3.5.1 Block Storage

Centralized storage is integrated into servers as a local hard drive managed by

the operating system to enable access to this storage via the local file system.

How can central storage be accessed as a local drive by servers and
hosted applications?

Context

Virtual and non-virtualized servers can be managed significantly easier if they do

not store any state information locally, i.e., on their (virtual) hard drives. This eases

their provisioning, decommissioning, and failure handling. Especially, the often

low availability of individual servers offered as IaaS (45) by cloud providers

requires a central data storage offering that assures a higher availability for stored

data. This way, if a server fails the data is not lost, but a new server can be started to

use the centralized data. However, in many cases, the software running on the

managed servers uses locally stored data and possibly cannot be altered to access a

centralized storage offering. Therefore, the impact of this centralization on the

hosted applications shall be minimized by hiding the complexities of accessing

centralized storage from applications.

Solution

Centralized storage is accessed by servers as if it was a local hard drive, also

referred to as block device. This block storage is integrated into an operating

systems running on a physical or virtual server as a local hard drive as shown in

Fig. 3.10. This integration is enabled through operating systems functionality or

third-party software. Once integrated into the server, the operating system provides

access to this storage via the local file system. Applications can, therefore, access

the centralized block storage as if it was a local hard drive of the server they are

hosted by.

Result

The operating systems running on the (virtualized) servers integrate remote storage

into the operating system as if they were local hard drives or as a folder in the file

110 3 Cloud Offering Patterns

system. On the storage offering side, these files may be formatted similar to a hard

drive. Common access protocols used by operating systems to integrate remote

storage as local drives are, for example, the network file system (NFS), WebDav

[99] or Microsoft’s Common Internet File System (CIFS) [100]. Virtualization of

the servers accessing such virtual hard drives significantly eases the integration

task. Many hypervisors (101) come with functionality to integrate remotely stored

hard drive images in the virtual servers managed by them.

Related Patterns
• Environment-based availability (98): if an elastic infrastructure (87) offers a

virtual server according to IaaS (45), a block storage offering may be used to

avoid data loss in case this server fails and, thus, helps to cope with the possibly

low-availability assured by these resources.

• Blob storage (112): a block storage offering may use a blob storage offering to

create snapshots of the hard drive image files that are integrated into remote

servers, for example, for backup purposes.

Known Uses

Block storage is offered as a component of Windows Azure [101] from where it

may be integrated into virtual servers running in Azure or into other remote servers.

Amazon Elastic Block Storage (EBS) [102] also offers functionality of block
storage. For virtual servers running in Amazon EC2 [18] this integration may be

done by the hypervisor used by Amazon so that the use of a centralized block

storage offering becomes completely invisible to hosted virtual servers.

int
eg

ra
tio

n

Virtual
Drives

Fig. 3.10 Images of a block

storage being mapped to

virtual drives

3.5 Storage Offerings 111

3.5.2 Blob Storage

Data is provided in form of large files that are made available in a file

system-like fashion by storage offerings that provide elasticity.

How can large files be stored, organized, and made available over a
network?

Context

Distributed cloud applications often need to handle large data elements, also

referred to as binary large objects (blob). Examples are virtual server images

managed in an elastic infrastructure (87), pictures, or videos. These files may be

too large for efficient handling in table-based storage. Due to the distribution of

applications components in distributed applications (160), the large data elements

shall be made available in a central storage offering. Access has to be enabled in an

agreed upon, standardized, elastic fashion that enables addressing, access and

retrieval of large data elements.

Solution

A blob storage organizes data elements in a folder hierarchy similar to a local file

system. Each data element is given a unique identifier comprised of its location in the

folder hierarchy and a file name. This unique identifier is passed to the storage offerings

to retrieve a file over a network. Access control mechanisms may be established to

ensure that users only access certain data elements. A blob storage, therefore, abstracts
from individual hard drives installed in servers. In particular the customer typically

does not know where his or her data is physically located. Some providers do allow

customers to specify data centers or geographical regions in which the physical storage

mediums powering the blob storage offering should be located.

Result

The data elements are stored centrally and in hierarchical folders. Within each folder

every data element is given a unique name. Folders also have unique names within

the scope of other folders in which they are contained. The address of a data element

is then determined by the protocol used to access it, the address of the storage

112 3 Cloud Offering Patterns

offering, its location within the folder hierarchy, and its file name. In Fig. 3.11, the

hypertext transfer protocol (HTTP) is used to access a video file maintained by a

storage offering addressed by the domain name “www.example.com”. The file is

called “movie1.mov” and is located in the folder “videos”.

Variations

The number of hierarchy levels in the directory structure is sometimes limited by

the storage offerings. Further limitations can include naming conventions, such as

length of identifiers or the use of special characters. Also, automatic distribution of

data among multiple geographically distributed blob storages can be offered to

guarantee locality of data.

Related Patterns

The data storage used for virtual images or software artifacts used by IaaS (45) and
PaaS (49) is often realized as blob storage. A blob storage offering itself is realized
according to PaaS (49). It may display strict consistency (123) or eventual consis-
tency (126) regarding the handling of data manipulations. Blob storage offerings are

often combined with the following patterns:

• Block storage (110): a block storage offering offers (virtual) hard-drives as IaaS
(45). To scale, customers have to manually (or automatically) add new (virtual)

hard-drives and must manually ensure that data is replicated to other (virtual)

hard-drives in other data centers if replicas are needed. Billing is then done per

size of the provisioned (virtual) hard-drives. In a blob storage offering replica-

tion is done by the storage platform which also adds and removes resources to

create just the amount of storage for a customer that he needs and only bills for

storage that is actually used.

Videos

movie1.mov

http://www.example.com/videos/movie1.mov
Pictures

picture1.jpg

movie1.mov

www.example.com

Fig. 3.11 Blob storage accessed via HTTP

3.5 Storage Offerings 113

http://www.example.com/

• Processing component (180): these components handle the workload of

applications and may work on very large files. These files may then be stored

in a blob storage offering to reduce the state information contained in processing

components. This makes them easier to scale within the scope of elasticity
managers (250), elastic load balancer (254), or elastic queues (257). It also

eases failure handling by the resiliency management process (283).

Known Uses

Traditional Web servers and FTP servers function according to the blob storage
pattern. Amazon’s Simple Storage Service (S3) [132] services offers similar func-

tionality. Amazon CloudFront [104] provides similar access to streaming content

that is automatically replicated geographically to increase performance. In

Windows Azure blob storage functionality is provided by Windows Azure Blob

storage [105].

114 3 Cloud Offering Patterns

3.5.3 Relational Database

Data is structured according to a schema that is enforced during data manip-

ulation and enables expressive queries of handled data.

How can data elements be stored so that relations between them can
be expressed and expressive queries are enabled to retrieve required
information effectively?

Context

The data handled by a storage offering is often comprised of large numbers of

similar data elements, for example, the same information is stored for every

customer of a company. Furthermore, these data elements have certain

dependencies among each other, for example, each customer may have an

associated sales agent who handles the customer’s orders. If such structured data

is stored in a storage offering, clients querying the data elements, therefore, make

certain assumptions about the data structure. Furthermore, the client expects con-

sistent relations between the retrieved data elements. In scope of stored information

about customers, a querying client could, for example, expect that a data element

describing a sales agent exists, if a customer data element has a reference to it.

Inconsistencies in this data structure may lead to failure of the querying clients,

because they assume the presence of certain data elements. If these data elements

cannot be retrieved, errors may occur. This consistency should be enforced for the

overall storage offering during the manipulations of individual data elements. For

example, if a sales agent leaves the company, the data element representing this

agent is deleted and it should be assured that there is not customer data element that

is still associated with this agent, as this would leave the overall stored data in an

inconsistent state.

Solution

In a relational database, data elements are stored in tables where each column

represents an attribute of a data element with a well-defined semantic. These

attributes may be used in data queries to make them more expressive. Furthermore,

table columns may have dependencies in the way that entries in one table column

must also be present in a corresponding column of a different table. These

dependencies are enforced during all data manipulations.

3.5 Storage Offerings 115

Result

Data elements are represented by rows of tables and table columns are attributes of

these individual data elements. Therefore, the table structure enforces a certain

number of attributes with well-defined semantics for each data element. In

Fig. 3.12, these semantics are depicted as column headers. This homogenous

structure of data elements ensures that the client querying the storage offering

may assume that certain attributes are present in retrieved data elements. Data

elements are identified uniquely by so-called key attributes that differentiate them
from all other data elements in the same table, as seen in the ID column of Fig. 3.12.

Furthermore, it is ensured that dependencies between data elements are always

consistent: relationships between elements are specified as special attributes, so-

called foreign keys, depicted in Fig. 3.12 as a dependency between column A of the

left table and column D of the right table. For entries in column D to be assigned a

certain value, that value must, therefore, also exist in a key attribute column of

column A. This description of data tables and their dependencies is referred to as a

database schema.
This data consistency regarding individual data element attributes as well as the

dependencies between attributes of different data elements makes the structure of

retrieved data predictable. Whenever a data element is created, altered, or deleted it

is verified that the relations described in this schema are still fulfilled. The

consistencies of these relationships are, therefore, evaluated and enforced during

all data manipulating operation. In Fig. 3.12, a write operation is depicted on the

right that violates the foreign key dependency between the two tables and, there-

fore, does not succeed. Again, an example for data structured in this fashion would

be customers represented by data elements that have dependency on a sales agent

data element. This dependency is represented by a foreign key of a customer data

element that is a key attribute of a sales agent, maybe an employee ID. The database

schema then ensures that a sales agent data element is not removed from the storage

offering as long as there are customer data elements referencing it and that a

customer data element is not altered to point to a non-existing sales agent.

The database schema enforced by the relational database has to be defined

during design time. It is deducted from the domain model of an application

ID
a
b
c

CB

3
2
1
A ID

x
y
z

FE

3
3
1
D

must exist
ID = a where A > 1

b
c 3

2

b 4
ID FED

violated!

Fig. 3.12 Exemplary

relational storage

116 3 Cloud Offering Patterns

describing the data elements used by an application as well as the functionality to

access them in order to support the applications usage scenario. Fowler [15] covers

best practices to create a domain model in his domain model pattern. Changes of the
domain model and subsequently in the database schema during the runtime of the

relational database when it is already filled with data may be complex and time

consuming. Therefore, if the domain model supported by an application is well-

known during design time and contains a lot of dependencies between data

elements a relational database can support this structure efficiently and enforce

the dependencies during runtime. This move the task to keep data dependencies

consistent from the application to the storage offering. If the domain model is

instead very simple with few dependencies and can possibly change during runtime,

a relational database may introduce too many restrictions making it difficult to

extend and adjust the application. Under these conditions, a key-value storage (119)
may be a better choice as it enforces less structure on handled data and is, therefore,

more adaptable.

During queries to the relational database, the attributes names defined in the

database schema may be used to make queries more expressive and, thus, to

reduce the amount of data that is returned to the querying client. Queries can

be sent to the database and express ranges of and conditions on data element

attributes as depicted in the left side of Fig. 3.12. Only the attributes that match

the specified conditions are returned to the querying application. The structured

query language (SQL) is a common and standardized query language for this

purpose [106, 107]. The more precise these queries can describe the required

elements, the less stress is put on the network transporting data elements and

on the application processing them. Relational databases may use different

techniques, such as indexing to increase query performance. Much like the

index of this book, a relation database can generate specific tables to answer

often used queries more quickly. If you were to search for a specific term in

this book, an alphabetical index generated based on the book content is easier

to search. Relational databases similarly generate indexes. As these may be

generated in advance, query processing times may be reduced.

Further Reading: the relational database pattern describes
how such a storage offering behaves to customers. The

relational model to store data is covered in more detail by

Codd [106]. For more information on how to structure data

in a relational form and for a detailed introduction to query

languages refer to Silberschatz et al. [108] or Elmasri et al.

[109]. These sources, especially, discuss how indexes

mentioned above may be created and updated to speed up

database queries.

3.5 Storage Offerings 117

Related Patterns

If expressive queries are not needed, scalability and performance of the data base

can often be increased, as described by the key-value storage (119) pattern.

Relational database often display strict consistency (123). Relational database
offerings are likely to be used in conjunction with the following patterns:

• Stateless component (171): components implemented according to this pattern

do not hold any internal state information, thus, completely rely on storage

offerings. They may use the relational database for this purpose.
• Data access component (188): in order to isolate other application components

from the idiosyncrasies of data querying, data access components may be used to

execute queries on relational databases. This separation of querying functional-

ity from the rest of the application also help to ensured loose coupling (156)

between the other application components to the database schema used by

relational databases.

Known Uses

A relational database is offered by data base management systems, such as IBM

DB2 [110], Oracle 11g [111], MySQL [112], or Microsoft SQL Server [113]. These

can be also realized on top of an IaaS (45) cloud. Virtual servers offering such

functionality are already available in Amazon EC2 [18, 114, 115]. Alternatively,

PaaS (49) offerings, such as Amazon Relational Database Service [116] or

Microsoft SQL Azure [117], can be used.

Side Note: a complex and well-known domain model with lots of

dependencies among data elements is an indicator for the use of

relational databases (115) as the complexity to enforce consistent

data dependencies is moved to the storage offering. A simple

domain model that may change during runtime and contains few

dependencies may make the key-value storage (119) a better choice.

118 3 Cloud Offering Patterns

3.5.4 Key-Value Storage

Semi-structured or unstructured data is stored with limited querying support

but high-performance, availability, and flexibility.

ID How can key-value elements be stored to support scale out and an
adjustable data structure?

Context

To ensure availability and performance, a data storage offering shall be distributed

among different IT resources and locations. Furthermore, changes of requirements

or the fact that customers share a storage offering and have different requirements,

raises the demand for a flexible data structure. Relational database (115) storage

offerings systems depend on user-defined database schemas that they enforce on

handled data. They are also harder to scale horizontally, as data structure validation

during queries requires high-performance connectivity between distributed

resources storing the data elements. An example for such dependencies would be

foreign keys used in a table. Refer to the relational database (115) pattern for more

information on this data structure. The complexity of query operations, if data from

remote systems has to be combined, forms an additional challenge in scope of a

relational database (115), as these database systems aim to utilize the resources of a

holistic server or cluster of servers that are connected via high-performance

networks optimally: in this setup, a query should be as expressive as possible to

avoid too large data sets being returned to querying clients. However, cloud

offerings may not have access to centralized, high performance servers but instead

employ a large number of distributed commodity servers [24, 63, 64]. The networks

connecting these servers may also be less powerful and unreliable reducing the

performance of a clustered relational database systems deployment in the cloud

[118]. The focus for many cloud storage offerings is instead the need to handle very

large amounts of data that are globally distributed and whose structure has to be

adjustable to new requirements quickly and flexibly. This flexibility enables

providers to adjust storage offerings to the requirements of different customers

and, especially, share the same offering between customers storing very different

data. Therefore, a storage solution is required that focuses on scaling-out rather than

on optimizing the use of a single server or cluster and that can adjust flexibly to

changes of the data structure.

3.5 Storage Offerings 119

Solution

A key-value storage offering stores pairs of identifiers (key) and associated data

(value) in a table. It supports no database schema or only a very limited schema to

enforce a data structure. Therefore, the expressiveness of queries is reduced signifi-

cantly in favor of scalability and configurability. Semi-structured on unstructured

data can be scaled out among many IT resources without the need to access many of

them for the evaluation of expressive queries, as supported by relational databases
(115). Configurability is enabled as only few fields of data elements have a

predefined semantic, for example, there may be only the unique identifier (key)

associated with arbitrary data fields. The number and semantic of these fields may

then be interpreted by the client accessing the key-value storage offering and cannot
be used in expressive queries that have to be interpreted by the key-value storage.

Result

Key-value storage offerings either do not enforce any data schema at all or a very

limited one. Often, they only allow querying the key attribute as depicted in

Fig. 3.13. The remainder of the data element structure is outside the control of

the key-value storage offering. An application’s ability to use such a storage

offering efficiently largely depends on its domain model. The domain model

describes the data handled by an application as well as the required functionality

to access it. Fowler [15] describes best practices to obtain this model. If the domain

model is rather simple with few dependencies between data elements the function-

ality provided by a key-value storage is an ideal match. On the other hand, if the

domain model contains many complex dependencies among handled data elements

an application using a key-value storage would have to ensure the consistency of

data dependencies, which possibly increases implementation complexity. Under

these conditions a relational database (115) enforcing a data structure and data

dependencies internally may be a better option as the application’s implementation

is simplified.

The reduced data structure supported by a key-value storage enables data to be

distributed among very many resources without affecting query performance sig-

nificantly. Furthermore, the supported data structure remains extremely flexible and

may be adjusted to changing requirements of different customers. This design of

course adds additional complexity to the applications that use such a data store as

changes to the implicit structure of the data need to be respected and enforced by the

ID
a
b
cID = a

a

Fig. 3.13 Exemplary read

operation on a key-value

storage

120 3 Cloud Offering Patterns

application. Since the expressiveness of queries is reduced, this storage offering

may return more data to the application initiating the query. Relational databases
(115) aim to reduce this amount of data through sophisticated queries, such as join
operations [108]. Therefore, key-value storage offerings possibly put a lot more of

the querying workload on the application than relational databases, where more

expressive queries are supported. This has to be addressed in the architecture of the

cloud application using key-value storage offerings, for example, by implementing

the map reduce (106) pattern.

Further Reading: data storage that reduces the degree of

data structuring are summarized by the term “NoSQL”.

Tiwari [119] gives a quick overview on NoSQL concepts

and current NoSQL implementations. A more thorough and

complete coverage of common underlying concepts, the

fundamental differences, and use cases of NoSQL databases

can be obtained from Sadalage and Fowler [120].

Variations

There is not one standard implementation of the key-value storage pattern and,

therefore, key-value storage offerings may differ in supported functionality. These

versatile implementations may also blur the boundaries between key-value storage
and relational database offerings. Some implementations allow only one unique

identified as described above, others allow more data fields to be queried similar to

relational database and also support additional structuring. Therefore, for each

application the ability to scale out, the structuring of data and the expressiveness of

querying capability has to be weighted when selecting a key-value storage
variations or a relational database (115).

Related Patterns

To further increase the ability to scale out among multiple resources and to cope

with network failures as well as the resulting network partitions, key-value storage
offerings often display eventual consistency (126). But strict consistency (123)

solutions are also possible. The key-value storage offering is, furthermore, likely

combined with the following patterns:

• Map reduce (106): as the expressiveness of queries is reduced, key-value
storage offerings generally return more data than what a client actually

requires. To handle the filtering in an application, additional data queries

may again be scaled out among distributed resources as described by the map
reduce pattern.

3.5 Storage Offerings 121

• Data access component (188): the functionality to handle access to a key-value
storage offering and possibly the required coordination of map reduce (106)

should be encapsulated into a data access component. This hides the

idiosyncrasies of the data access from the rest of the application and aims at

making it loosely coupled (156) to the used key-value storage offering.

Known Uses

There are stand-alone implementations of key-value storage systems that can be

installed as regular middleware, such as Apache Cassandra [121], Apache

CouchDB [98] or MongoDB [122]. Cloud-based key-value storage offerings

include Amazon’s SimpleDB [123] and Amazon Dynamo [124], or Windows

Azure Tables [125]. In case of Amazon Dynamo, the consistency behavior of the

offerings (eventual or strict) may be specified on a per-query basis. Google’s Big

Table is another key-value storage implementation and is described in [126].

Side Note: a key-value storage (119) can be scaled out efficiently due
to few enforced dependencies among data elements and a simple data

structure. If the domain model of an application is simple and

contains few dependencies, it can use such a storage offering

efficiently. However, if the domain model is complex containing a

lot of dependencies, a relational database (115) can enforce this data
structure instead of handling this task in the application functionality.

122 3 Cloud Offering Patterns

3.5.5 Strict Consistency

Data is stored at different locations (replicas) to improve response time and to

avoid data loss in case of failures while consistency of replicas is ensured at

all times.

How can data be distributed among replicas to increase availability,
while ensuring data consistency at all times?

Context

To ensure failure tolerance, a storage offering duplicates data among multiple

replicas. These replicas store the same set of data, so in case any of these replicas

is lost, data may still be obtained and recovered from the other replicas. In this

scope, the consistency of the data contained in these replicas shall be pertained at all

times. The highest level of consistency is granted if all replicas are updated when

the data contained by them is altered. However, this can lead to a decreasing

availability of the overall storage solution regarding such write operations, because

all replicas have to be available for data alterations to take place. This may, for

example, happen if network connectivity between the replicas is reduced, thus, if

the number of replicas experiences so called network partitioning. Instead, it shall
be ensured that the storage offering is available even if not all replicas are available

and that the correct version of the data is accessed.

Solution

Data is duplicated among several replicas to increase availability. A subset of data

replicas is accessed by read and write operations to increase network partitioning

tolerance. The ratio of the number of replicas accessed during read and write

operations guarantees consistency: it is ensured that at least one replica with the

most frequent data version is accessed during each operation.

Result

A storage offering usually incorporates multiple replicas transparently to the user.

A read or write operation performed by a customer is internally executed as a

3.5 Storage Offerings 123

number of read or write operation on the replicas. Subsets of the available replicas

are accessed during these internal read and write operations. Thus, the system is

available even if not all replicas are accessible. Strict consistency is guaranteed

through the size of the subsets of replicas that are read or written. Considering the

overall number of replicas (n), the number of replicas accessed during read (r), and
those accessed during write (w), it is ensured that n < w þ r holds true for every

read and write operation. In Fig. 3.14, these ratios and operations are depicted

exemplarily for two replicas. In this example, both replicas are accessed during

write operations and one is accessed during read operations. Therefore, every

operations accesses at least one replica with the most current version. The values

for w and r are usually fixed at design time and reflect the different requirements on

read and write performance. In case of the above example, two replicas are used and

both are accessed by write operations. Read operation only have to access one

replica, thus, their performance is increased. Common examples for such a setup

would be a corporate address book, where write operations are performed rarely

while read operations take place often. If instead write performance shall be

increased, the number of replicas accessed during a write is decreased and those

during read increased. This would be the case in a logging system to which data is

written often, but evaluated less-frequently, thus, the ration between replicas

accessed during reads and replicas accessed during writes may be adjusted to

require less replica accesses for write operation.

For consistency, these read and write operations accessing multiple replicas are

additionally subsumed in one transaction that guarantees ACID properties. These

properties are ensured for the managed data replicas and are what the customer of

the storage offering experiences when performing read and write operations:

• Atomicity: all operations of the transaction have to be successful for the external
read or write operation to be successful. This ensures that the required set of

replicas is really accessed successfully to ensure consistency.

• Consistency: after the transaction, the overall system is in a consistent and valid

state. This property is ensured by the ratio of replicas accessed during read and

write operations.

number of replicas (n) = 2

replicas accessed to read (r) = 1
replicas accessed to write (w) = 2

Fig. 3.14 Exemplary strict

consistent replicas

124 3 Cloud Offering Patterns

• Isolation: no other transaction may interfere with a transactional read or write

access to the set of replicas.

• Durability: all alterations performed by the transaction are stable and will not be

revoked.

Further Reading: transactions are a common concept to

coordinate the alteration of data stored in distributed

databases. An excellent coverage of fundamental concepts

is given by Tanenbaum et al. [127]. More practical

information on how to build applications that have to

handle transactions is given by Bernstein et al. [128] and

Gray et al. [129].

Variations

Some storage offerings allow the specification of consistency behavior on a per

request basis. Therefore, critical information can be retrieved following strict
consistency; less critical information is retrieved granting eventual consistency (126).
While the strict consistency pattern is mostly being implemented by providers,

application developers may also have to consider the consistency of data when they

integrate different cloud providers or replicate data between a cloud environment and a

non-cloud environment, such as a static data center or a legacy application.

Related Patterns

All storage offering patterns described in Sect. 3.5 of this Chapter can guarantee

strict consistency or eventual consistency (126). The latter is often used if consis-

tency requirements can be relaxed in favor of increased performance and availabil-

ity to serve very large user groups. Some of the storage offerings, like relational
database (115) are more likely to display strict consistency, while other such as key-
value storage (119) and are more likely to use eventual consistency (126).

Known Uses

Database management systems, such as MySQL [112] or IBM DB2 [110] ensure

strict consistency. The replicas may be realized by multiple instances of the

database installations that comprise a cluster. Since these clusters rely heavily on

connectivity, their performance may degrade in a cloud environment [118]. This is

due to the fact, that connectivity between cloud resources of the cluster may be not

as powerful as in a local data center, where the network topology may be specifi-

cally optimized for a database cluster setup.

3.5 Storage Offerings 125

3.5.6 Eventual Consistency

If data is stored at different locations (replicas) to improve response time and

avoid data loss in case of failures. Performance and the availability of data in

case of network partitioning are enabled by ensuring data consistency even-

tually and not at all times.

How can data be distributed among replicas with focus on increased
availability and performance, while being resilient towards
connectivity problems?

Context

Using multiple replicas of data is vital to ensure resiliency of a storage offering

towards resource failures. Keeping all these replicas in a consistent state, however,

requires a significant overhead as multiple or all data replicas have to be accessed

during read and write operations. The availability of the storage offering, therefore,

becomes dependent on a certain number of replicas during read operations and

write operations. To cope with unavailable replicas, strict consistency (123) ensures
that these read and write operations only access a subset of replicas, so it is

guaranteed at all times that the retrieved data is current and consistent. Depending

on the priority of read accesses and write accesses the ratio of replicas that have to

be read or written can be adjusted. While making the offering dependent on fewer

replicas during accesses, still more than half of the replicas need to be accessed by

one or both of these operations to ensure consistency as described by the strict
consistency (123) pattern in greater detail. If a large number of replicas is

distributed among a large connection network, this may result in an inacceptable

performance of the offering. Also, the connection networks may be less reliable in

this large distributed setup making connection problems more likely. When this

occurs and the replicas are divided into so called network partitions, the read and

write operations may not be able to access the necessary number of replicas to

ensure strict consistency. And even during times of connectivity, the transmission

time of the data updates over such large distributed networks may be too high for

the desired performance of read and write operations. Assuring consistency among

many geographically distributed replicas can, therefore, reduce the availability and

performance of the storage offering to a degree that becomes inacceptable.

126 3 Cloud Offering Patterns

Solution

The consistency of data is relaxed. This reduces the number of replicas that have

to be accessed during read and write operations. Through this relaxation, the

storage offering, therefore, becomes more tolerant towards network partitioning

and node failure, because fewer replicas have to be accessed, thus, increasing its

availability. The performance of read and write operations is also increased, as

replicas may be accessed that are close to the accessing entity reducing delays in

the distribution network. Instead of enforcing strict consistency (123) among the

data replicas during read and write operations, data alterations are eventually

transferred to all replicas by propagating them asynchronously over the connec-

tion network. Figure 3.15 depicts three eventually consistent replicas. Read and

write operations are only executed on one replica. Data alterations are propagated

eventually. However, if this propagation has not yet been executed as indicated by

the dashed data element, or if it fails, read operations do not return a data element

that was previously written. Data returned under such conditions is, therefore,

inconsistent.

Result

While strictly consistent (123) storage offerings ensure that always at least one

replica containing the current version is read, eventually consistent databases allow

that obsolete versions may also be read. The CAP theorem [67] gives an overview

of the relation between consistency, availability, and partitioning tolerance. It states

that in a distributed storage environment, only two of those properties can be

optimized. By reducing data consistency, the properties availability and perfor-

mance of the storage offering are increased. The impact of network partitioning and

network delays is reduced as fewer replicas have to be accessed during read and

new
data element

asynchronous
update

failed
update

Fig. 3.15 Exemplary

eventual consistent replicas

3.5 Storage Offerings 127

write operation. After an update to this small number of replicas, other replicas are

updated asynchronously, for example, via message queues provided by a message-
oriented middleware (136). The term consistency window is often used to refer to

the time it takes for these asynchronous updates to reach all replicas in absence of

network partitioning. In case of a network partitioning, updates are eventually

propagated to all replicas once the partitioning is resolved. Additional challenges

arise when replicas in different network partitions have been changed indepen-

dently. This condition may also occur due to the consistency window when there are

no network partitions, but data is accessed concurrently by many clients while

updates traverse trough the set of replicas eventually. For some offerings, the latest

data update simply wins such conditions. Others do not make any assurances for

concurrent access to the offering. Therefore, provider service level agreements and

offering behavior descriptions should be carefully evaluated to ensure that they fit

the expected and required behavior of the application using the storage offering.

Similar to the ACID properties guaranteed by strict consistency (123), an

eventual consistent offering also displays a certain set of generic properties. We

will now cover these BASE properties [130] prior to covering in detail what this

means for the accesses executed by one single client and a set of concurrently
accessing clients:
• Basically Available: the system providing data is available event if parts of it

fail. BASE systems try to maintain the operability in case of failures as long as

possible for as many users as possible and accept data inconsistencies in this

attempt leading to the next two properties.

• Soft State: BASE systems do not have a discrete state such as ACID systems.

Therefore, they may display a different state to different users or the same user at

a certain point in time.

• Eventually Consistent: the soft state of data propagates through a BASE system

and eventually reaches a state that is consistent regarding the complete system.

Respecting the BASE properties, it is important to consider the behavior of a

storage offering regarding the accesses of a single client. In detail, eventually

consistent storage offerings may display one or multiple of the following client-
centric consistency behaviors [127, 131] to a client. If multiple behaviors are

supported, they may have to be selected on a per-access-basis.

• Monotonic Reads – One client will never read data that is older than what it has
read before. Therefore, if a client has read a certain version of a data element any

later read operations performed by that client will return the same or a more

recent version.

• Monotonic Writes –Write operations of one client are executed in the order they
were issued. Therefore, a client will never update data that does not reflect

changes of previous writes. On the data replica side, a more recent write

operation will, thus, only be executed by a data replica, if it has executed all

previous write operations of one client.

• Writes Follow Reads – A client will never write to replicas that are older than
what it has read before. Therefore, a client always writes to the same or a more

128 3 Cloud Offering Patterns

recent version that it has previously read. This consistency behavior is closely

related to monotonic writes, but a little less powerful: if a client desires

monotonic-writes behavior, it has to execute a read operation prior to every

one of its write operations.

• Read Your Writes – One client will immediately see data alterations performed
by it. Therefore, if a client writes a data element, any read operations it performs

after that will retrieve this data version or a more recent one.

Cloud offerings may tighten the consistency that is guaranteed for concurrent
accesses of multiple clients [132, 133], by guaranteeing one or more of the

following assurances:

• Read-After-Write – a newly created data element will be visible to all clients
immediately. Therefore, if a client creates a new file or data base table entry, the

data element will be immediately visible to all consecutive read operations

executed by all clients.

• Read-After-Update – the effect of an update to a data object will be visible
to all clients immediately. Therefore, if a client changes a data object all

consecutive read operations on that object will return the updated value.

In contrast to read-after-write consistency, this behavior regards changed data

not only newly created data.

• Read-After-Delete – if a data element is removed clients will be unable to
retrieve it. Therefore, after a data element is deleted all consecutive read

operations will be unsuccessful by all clients.

Finally, eventual consistent storage offerings can use a concept called condi-
tional writes to coordinate the update of data elements. If an update operation is

executed conditionally, the client updating a data element passes a condition to

the storage offering under which the update shall be executed. This approach is

used to pass the expected current value of the data element or the expected

version to the storage offering. Therefore, it can be avoided that a client

changes a data element that has been changed since that client has been last

accessed the data element. If the condition is not fulfilled, the update operation

fails.

Side Note: eventual consistency can have many characteristics

regarding the behavior displayed to a single client and concurrently

accessing clients. We captured commonly found behavior here.

However, this behavior may be changed by providers and the terms

covered here may be used for different behavior. Therefore, eventual

consistent behavior of cloud offerings has to be evaluated carefully

in every usage scenario.

3.5 Storage Offerings 129

Related Patterns

All storage offering patterns can guarantee strict consistency (123) or eventual
consistency. Many storage offerings found in public clouds (62) display eventual
consistency, as they target very large user groups and are globally distributed. This

distributed often hinders a timely distribution of data updates.

Known Uses

Amazon SimpleDB [123] uses two consistency models, strict consistency (123) and
eventual consistency. For every request to the storage offering, a user can specify

the required consistency model. In case of eventual consistency fewer replicas are
read to increase the availability and performance. In case strict consistency is

required, the number of replicas that are read is increased to guarantee accessing

the current version. Also, this storage offering supports the above mentioned

conditional writes. Apache CouchDB [98] and Apache MongoDB [122] also

support eventual consistency.
Eventual consistent behavior is, however, not dedicated to cloud computing.

Probably the largest as best-known eventual consistent systems is the domain name

system (DNS) [134]. It handles the resolution of domain names to addresses and is,

therefore, fundamental to the proper functioning of the Internet. As it is comprised

out of a huge number of globally distributed DNS servers, changes to a domain

name or the address that name maps to are propagated eventually.

Further Reading: the eventual consistency pattern only

describes how an eventual consistent data store behaves

and what motivates providers and customers to use such

data stores. It does not describe how to actually build such a

data store that is comprised out of multiple replicas. For a

detailed description how eventual consistency can be

ensured by a replica management system, please refer to

Tanenbaum et al. [127].

130 3 Cloud Offering Patterns

3.6 Communication Offerings

Applications running in the cloud rely on different communication offerings.

These communication offerings are used cloud internally and externally, for

example, to exchange messages between application components or to commu-

nicate with applications in on-premise datacenters. This section first describes a

fundamental communication offering to configure networking connectivity via a

self-service interface, which is virtual networking (132). Then, it covers commu-

nication offerings providing functionality for message exchange. This function-

ality is provided by a message-oriented middleware (136) that manages different

queues, routes messages between them and also handles message format

transformation. A message-oriented middleware can assure different delivery

behavior for handled messages. The assurance that messages are not lost is

described by the exactly-once delivery (141) pattern and at-least-once delivery
(144) pattern. This assurance may also be extended to ensure the successful

receive of messages by clients interacting with the message-oriented middleware

as described by the transaction-based delivery (146) and timeout-based delivery
(149) pattern.

3.6 Communication Offerings 131

3.6.1 Virtual Networking

Networking resources are virtualized to empower customers to configure

networks, firewalls, and remote access using a self-service interface.

How can network connectivity between IT resources hosted in a
cloud be configured dynamically and on-demand?

Context

Application components deployed on elastic infrastructures (87) and elastic
platforms (91) rely on physical network hardware to communicate with each

other and the outside world. On this networking layer, different customers of a

cloud shall be isolated from each other to increase security and avoid performance

influences between them. Furthermore, networking connectivity between the cloud

and other environments, i.e., an on-premise data center shall be enabled.

Solution

Just as hypervisors (101) introduce a virtualization level to physical hardware

enabling the isolated hosting of multiple virtualized servers, virtual networking
abstracts physical networking resources, such as networking interface cards,

switches, routers etc. to virtualized ones. These virtual networking resources may

share the same physical networking resources enabling sharing between multiple

customers. The physical hardware of the connection networks often has to support

this virtualization. The necessary technologies have been supported by networking

hardware for quite some time but are made available to customers through self-

service interfaces as depicted in Fig. 3.16.

Result

Customers may configure the connectivity between the provisioned IT resources

and hosted applications, as well as integrate other network environments, such as

their own data centers. In many cases, the configurable network entities are virtual

local area networks (VLAN), virtual routers, firewalls, and virtual private networks

(VPN), all covered in the following.

132 3 Cloud Offering Patterns

Further Reading: just as a hypervisor (101) enabling

hardware virtualization, virtual networking is an enabling

technology for cloud computing as it allows customers to

configure networks, routing, firewall rules, and remote access

via a self-service interface without any physical alterations in

the providers’ data centers. For an in-depth description of the

networking technologies covered briefly by this pattern please

refer to Harpence [135], Odom [136], or Deal [137].

Virtual local area networks (VLAN): networking switches – physical hard-

ware interconnecting servers can support VLANs to define the network segments

on which servers may communicate directly with each other regardless of their

actual physical connectivity. Figure 3.17 depicts and exemplary VLAN setup

comprised of two physical switches connecting six servers. Through the configura-

tion of two different VLANs (“v1” and “v2”) on the ports of these two switches, the

servers one, two and six can communicate directly with each other just as the

servers three through five, because they reside on the same virtual network segment.

This virtualization of network segments is used in clouds to enable self-service

configuration of network connectivity by customers and to ensure isolation of

network traffic between customers.

Virtual routers: similar to virtual configuration of switches to specify different

VLANs, providers offer network routers connecting multiple network segments

that can be configured through ha self-service interface. These connected network

segments can be multiple VLANs, for example. While communication between

servers in a VLAN is enabled directly between the servers, a router acts as one

communication partner on such a segment and forwards communication to other

networks it is connected to based on customer-specified routing rules.

Firewalls: this networking resource is used to restrict the networking traffic

exchanged over communication networks to ensure security. Many cloud providers

allow the separation of their environments into separate networks through the

definition of VLANS. Connectivity between these network segments may then be

controlled by virtual routers and virtual firewalls through the definition of routing

Fig. 3.16 Self-service

interface for configuration of

virtual networking

3.6 Communication Offerings 133

rules and access rules specified by the customer. Consider, for example, an appli-

cation deployed in an IaaS (45) offering depicted in Fig. 3.18. It is comprised of a

Web frontend that is accessed through the standard HTTP port 80. Therefore, a

virtual firewall between the virtual server hosting this component and the Internet

only allows this port for inbound communication. TheWeb frontend also accesses a

data base hosted on a different virtual server through the port 3,306. Both servers

are again separated by a virtual firewall that only allows this form of communica-

tion. Again, the virtualization of firewalls is used in clouds to enable the self-service

definition of access rules by customers.

Virtual private network (VPN): many cloud providers offer functionality to

create virtual private networks as a service, thus, an encrypted communication

channel may be established between the cloud and a different network, commonly

an on-premise datacenter or private cloud (66). Figure 3.19 depicts such an

encrypted channel from a server in a corporate network to an IaaS (45) provider.

Through this encrypted channel, servers hosted by the cloud provider may, for

example, be accessed as if they resided in the same local network as the server

connecting to the cloud.

Related Patterns
• Elastic infrastructure (87): virtual networking is often provided in conjunction

with an elastic infrastructurewhere it used to configure the network connectivity
between virtual servers. In scope of an elastic platform (91), the networking is

instead often hidden from customers as communication is enabled through

higher-level communication services, such as messaging provided by a mes-
sage-oriented middleware (136).

Fig. 3.17 Exemplary VLAN

setup

33
06

Internet
80

Web
frontend

DatabaseFirewall Firewall

Fig. 3.18 Firewall setup for

an example application

134 3 Cloud Offering Patterns

• Hypervisor (101): some hypervisors allow the definition of virtual networks

between virtual servers hosted on them as well as the virtual configuration of

connectivity to the outside world.

Known Uses

Amazon AWS [138] allows the definition of so called security groups [139],

network segments on which virtual servers of its Elastic Compute Cloud (EC2)

[18] reside. The communication between these security groups and the outside

world is restricted by user-defined firewall and routing rules. Other products and

offerings offer similar functionality to group virtual servers into groups that restrict

access from and to outside servers.

Fig. 3.19 VPN from a

corporate network to an IaaS

provider

3.6 Communication Offerings 135

3.6.2 Message-Oriented Middleware

Asynchronous message-based communication is provided while hiding com-

plexity resulting from addressing, routing, or data formats from communica-

tion partners to make interaction robust and flexible.

How can communication partners exchange information
asynchronously with a communication partner?

Context

The application components of a distributed application (160) are hosted on

multiple cloud resources and have to exchange information with each other.

Often, the integration with other cloud applications and non-cloud applications is

also required. These different applications possibly use different programming

languages, data formats, and execution environments (104). When one application

directly exchanges information with another application, the address and data

format of the target application has to be respected. Even within one homogeneous

distributed application (160), the communicating application components must be

available at the time when the information shall be exchanged. These dependencies

can significantly reduce the availability of the overall application as the failure of

one application component would directly affect all components communications

with it. The resulting dependency between communication partners regarding their

location, availability, and data format is called tight coupling. It also increases the

complexity of the management of the overall application or the landscape of

applications, because changes to one communication partner, for example, regard-

ing the format of exchanged data or the address used, also affect the other commu-

nication partner directly. This should be avoided to increase the availability of the

overall application and ease continuous alterations by making communication

flexible.

Solution

Communication partners exchange information asynchronously using messages

handled by a message-oriented middleware. For this purpose, a message-oriented
middleware provides different communication functionality:

136 3 Cloud Offering Patterns

A message queue also called message channel by Hohpe and Woolf [1] stores

messages until they are retrieved from a receiver. Multiple receivers can send

messages to a queue and retrieve them from it. This behavior enables the scalability

of cloud applications using messaging. In this book, we will mostly use message

queues in the covered patterns.

A pub-sub channel [1] may be used to broadcast a message to multiple receivers.

While a message queue conceptually delivers messages to only one receiver, a pub-

sub channel delivers messages to multiple receivers.

Further Reading: the message-oriented middleware pattern
summarizes selected messaging patterns of Hohpe andWoolf

[1]. These messaging patterns are applicable in scope of

cloud applications in their original form and should,

especially, be considered when building a message-oriented

middleware offering. Here, we give an overview of

messaging functionality. We focus on the cloud-specific

behavior of such an offering and the properties relevant in

cloud applications.

Result

When interacting with a message-oriented middleware, a sender puts a message on

one message queue or pub-sub channel and receivers can retrieve it from possibly

different queues. In between these two access points the message-oriented
middleware handles the complexity of addressing, availability of communication

partners and message format transformation as shown in Fig. 3.20. Therefore, in

Fig. 3.20 Message-oriented middleware and related patterns

3.6 Communication Offerings 137

addition to message queues, the message-oriented middleware provides

components that route messages to intended receivers as well as handle message

format transformation. Communication partners may communicate via messages

without the need to know the message format expected by the communication

partner or the address at which it can be reached. Furthermore, communication

partners can send and receive messages at their own pace and without relying on the

availability of communication partners.

The message-oriented middleware, therefore, suggests a pipes-and-filters appli-
cation architecture as covered by Hohpe and Woolf [1], Bushmann et al. [14] and in

the distributed application (160) pattern in Chap. 4. In this scope, application

components act as independently operating filters that are interconnected through

pipes, i.e., the message queues provided by the message-oriented middleware.
Hohpe and Woolf [1] describe the behavior of these pipes and how they may be

connected. Regarding the filters, i.e., the application components, Hohpe andWoolf

also described how to interface with the messaging systems in the adapter pattern.
The more intermediaries a message passes through while traversing a message-

oriented middleware, the more likely it becomes that an intermediary fails. To

address this issue, messages are often stored in persistent storage by the message-
oriented middleware from where they can be recovered in case of failures. This

approach is described by the guaranteed delivery pattern introduced by Hohpe and

Woolf [1].

Variations

A message-oriented middleware is used if small amounts of data need to be

exchanged frequently, as messages are often restricted in size so they can be

handled more easily. If larger amounts of data have to be exchanged, messages

may either contain a pointer to this data that is actually stored at a different

location, for example, a storage offering (see Sect. 3.5) or the data may be split

up among multiple messages. Hohpe and Wolf [1] cover patterns for this

exchange of large data elements: the file transfer pattern describes how data

may be exported from one application and imported by a different one. A

message sequence may be used to split large data elements among a set of

messages.

Related Patterns

Figure 3.20 shows how the other messaging patterns of this section are related to the

message oriented middleware:

• At-least-once delivery (144): it is ensured that messages traversing the message-
oriented middleware are delivered once or multiple times. This is achieved

through acknowledgements for message receives. If an acknowledgement is

not received, a message is retransmitted.

138 3 Cloud Offering Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_4

• Exactly-once delivery (141): messages traversing the message-oriented

middleware are delivered once and only once to the receiver. This involves

reliably storage of messages in the message-oriented middleware and, often,

transactional message exchange during its traversal of the message-oriented
middleware.

• Transaction-based delivery (146): the transactional behavior used to assure at-
least-once delivery of messages can be extended to the client receiving the

message. This assures not only that messages are delivered exactly once, but

also that they are received exactly once.

• Timeout-based delivery (149): the acknowledged receive of messages can be

extended to the client receiving the message, to assure not only that messages are

delivered at-least-once, but also successfully received by message receivers.

Side Note: the patterns at-least-once delivery (144) and exactly-
once delivery (141) describe assurances of the message-oriented
middleware regarding the end-to-end message delivery from

sender to receiver.

The patterns transaction-based delivery (146) and timeout-based
delivery (149) describe the behavior of the message-oriented
middleware when interacting directly with the receiver of

messages.

In addition to these communication patterns, there are several related patterns that

should be considered to be implemented in applications and their components

interacting with a message-oriented middleware:
• Transaction-based processor (201): if the message-oriented middleware uses

transactions to assure that messages are delivered exactly-once (141), the trans-
action can be extended to include the message processing performed by the

receiver as well. Therefore, the transaction-based processor enables the appli-

cation to assure that messages are processed exactly-once. A similar behavior is

also described by Hohpe and Woolf’s [1] transactional client pattern. The

transaction-based processor pattern summarizes this behavior and extends it to

the transactional interaction with a storage offering.

• Timeout-based message processor (204): if the message-oriented middleware
assures at-least-once delivery (144) by acknowledging message receives, the

client can extend the acknowledgment to the successful message processing.

Therefore, the timeout-based message processor enables an application to assure
that messages are processed at least once.

• Distributed application (160): applications that are comprised of multiple

loosely coupled (156) application component usually employ a message-

oriented middleware to exchange information between components. In this

scope, an idempotent processor (197) may be used to cope with duplicate

messages created by a message-oriented middleware assuring at-least-once
delivery.

3.6 Communication Offerings 139

• Message mover (225): this component may be used to integrate different mes-
sage-oriented middleware instances offered by different cloud providers or that

are installed in on-premise datacenters.

• Watchdog (260): a watchdog may be used to cope with failing resources,

especially, in scope of environment-based availability (98). It uses message

queues to store information securely even in case of failures.

• Batch processing component (185): message queues may be used to actively

delay messages. A batch processing component does so to process messages

only when conditions are feasible, for example, if cloud resource prices are low

or the overall application experiences a low utilization.

Known Uses

Using messaging to integrate distributed applications is a common architectural

approach. Many additional messaging patterns have been identified by Hohpe and

Woolf [1]. Amazon offers a message-oriented middleware as a service, called

Amazon Simple Queue Service (SQS) [38]. A similar service is provided by

Windows Azure Messaging [140]. Apache Camel [141], IBM WebSphere MQ

[142], and Apache ActiveMQ [143] are open source and commercial message-
oriented middleware products designed for on-premise use. Many of the cloud-

based offerings offer at-least-once delivery (144) unlike many on-premise

solutions, which typically also provide exactly-once delivery (141). When

switching between different message-oriented middleware products, a change in

delivery behavior has to be carefully evaluated.

140 3 Cloud Offering Patterns

3.6.3 Exactly-Once Delivery

For many critical systems duplicate messages are inacceptable. The messag-

ing system ensures that each message is delivered exactly once by filtering

possible message duplicates automatically.

=1 How can it be assured that a message is delivered only exactly once
to a receiver?

Context

Message duplicity is a very critical design issue for distributed applications (160)
and or application components that exchange messages via a message-oriented
middleware (136). A message-oriented middleware may try to avoid message

duplicates by storing messages in persistent storage and acknowledge the success-

ful transmission of every message from one persistent storage to the next, as

described by Hohpe and Woolf [1] as guaranteed delivery. In case of failures, the

recovery time may, however, be inacceptable to an application if it exceeds a

certain threshold. In this scope, messaging systems may retransmit a message,

which is a concept that is commonly used by message-oriented middleware to

guarantee at-least-once delivery (144). A critical design decision affecting message

duplications is how long to wait for a system to recover eventually from its

persistent storage after a failure occurred. Waiting for message recovery may

only be acceptable in a given timeframe as a timely delivery may demand that

messages are resend instead.

Solution

Upon creation, each message is associated with a unique message identifier. This

identifier is used to filter message duplicates during their traversal of a message-
oriented middleware (136).

Result

The identification and removal of message duplicates may be offered by the

message-oriented middleware (136) itself or may be implemented by the cloud

3.6 Communication Offerings 141

application using messaging. In the latter case, the component accessing the

message-oriented middleware that identifies message duplicates is implements

the idempotent processor (197) pattern. If the filtering is handled by the message-
oriented middleware, it associates each new message with a unique identifier. This

is used by a message filter as described by Hohpe and Woolf [1] on the message

path to delete duplicates. To identify message duplicates, the message-oriented

middleware stores the identifiers of messages it has already seen passing through it

and deletes those it has already seen as depicted in Fig. 3.21. A central design

decision is the size of the list that stores message identifiers, because it dramatically

affects how well the message-oriented middleware (136) may detect message

duplicates as well as the performance of duplicate identification. These two factors

have to be weighted carefully. To balance these factors, messages are often also

associated with a time frame in which they are valid to limit the size of message

identifier lists. This means that a message identifier may be dropped when it is

too old.

Variations

As pointed out, the filtering of messages can be implemented in the message-
oriented middleware, or as a specific application component residing outside of

the message-oriented middleware. This implementation would then form an idem-
potent processor (197).

Related Patterns
• Message-oriented middleware (136): exactly-once delivery is a property that can

be assured of a message-oriented middleware.
• Transaction-based delivery (146): exactly-once delivery can be combined with

transaction-based delivery to incorporate the receive operations of a communi-

cation within a transaction. This assures that a message is successfully received

prior to being removed from a message-queue. If this transactional-receive of

messages shall also be extended to assure not only a successful receive of

messages, but also their successful processing, the receiver of messages may

implement the transaction-based processor (201) pattern.

Fig. 3.21 Message filter used to guarantee exactly-once delivery

142 3 Cloud Offering Patterns

Known Uses

Exactly-once delivery is described in greater detail by the WS-Reliable Messaging

standard [144]. It is implemented, among other message-oriented systems, by IBM

WebSphere MQ [142]. Tanenbaum et al. [127] describe methods for failure toler-

ance during a message exchange if a failure occurs during message receive or

message processing.

3.6 Communication Offerings 143

3.6.4 At-Least-Once Delivery

In case of failures that lead to message loss or take too long to recover from,

messages are retransmitted to assure they are delivered at least once.

1+
How can communication partners or a message-oriented middleware
ensure that messages are received successfully?

Context

Whether or not messages exchanged through a message-oriented middleware (136)
by two communication partners actually reach their destination may be uncritical. For

example, messages may be interchanged for informational purposes only. For other

messages, guaranteed delivery and the number of times a message is delivered may

be very critical, for example, in stock trading and financial systems. For such

messages, the additional overhead and complexity to assure exactly-once delivery
(141) is adequate. However, there are other use cases, where message duplicity can be

coped with by the application or a cloud provider may simply decide to relax the

exactly-once delivery (141) behavior as it is easier to implement and scale possibly

reducing the price of an offering. Therefore, for scenarios where message duplicates

are uncritical, it shall still be ensured that messages are received.

Solution

For each message retrieved by a receiver an acknowledgement is sent back to the

message sender. This interaction protocol may be used each time a message is

transmitted inside a message-oriented middleware (136). In case this acknowledge-
ment is not received after a certain time frame, the message is resend.

Result

Since the sending communication partner resends unacknowledged messages, a

message that is lost on the way to the receiving communication partners is eventually

received. However, duplicate messages may be generated, if an error occurs during the

transmission of the acknowledgement message itself as depicted in Fig. 3.22. In this

case, the sending communication partner will mistakenly assume that the message has

not been received and will retransmit it.

144 3 Cloud Offering Patterns

This acknowledged transmission of messages may be implemented between

communicating applications or may be used internal of a message-oriented
middleware (136). The former case may be used in custom applications to even

use very unreliable message queues. Especially, this interaction protocol may be

used when a receiver interacts with a message-oriented middleware as described by
the timeout-based delivery (149) pattern.

Variations

Acknowledgement messages can be sent either after each individual message or

after an agreed upon number of messages. This variation reduces the necessary

communication overhead, if messages are not lost often. However, if a message is

lost, it may lead to a retransmission of multiple messages, even though these have

already been received successfully.

Related Patterns
• Idempotent processor (197): if a message queue provided by a message-oriented

middleware (136) guarantees at-least-once delivery, the receiver of messages

needs to be able to detect and handle message duplicates. Alternatively, the

receiver functionality can be designed to be immune to duplicate messages. Both

approaches are described by the idempotent processor pattern.
• Timeout-based delivery (149): this delivery method is used to assure that a

message is received by a communication partner. It does so by extending the

at-least-once delivery pattern to incorporate the receive operation performed on

a message queue provided by a message-oriented middleware (136).

Known Uses

Most cloud messaging services guarantee the described at-least-once delivery
behavior [38, 140]. Just as exactly-once delivery (141), the at-least-once delivery
behavior is also included in the WS-Reliable Messaging standard [144].

Tanenbaum et al. [127] covers methods to generally implement at-least-once
delivery between a sender and receiver as part of creating fault-tolerant distributed

systems.

Sender Receiver

ACK

ACK

Fig. 3.22 Communication

between a sender and a

receiver to ensure at-least-

once delivery

3.6 Communication Offerings 145

3.6.5 Transaction-Based Delivery

Clients retrieve messages under a transactional context to ensure that

messages are received by a handling component.

How can it be ensured that messages are only deleted from a
message queue if they have been received successfully?

Context

While traversing a message-oriented middleware (136), thus, while being passed

from message queue to message queue provided by this offering, the message-
oriented middleware itself can assure that messages are not lost by assuring at-
least-once delivery (144) or exactly-once delivery (141). Eventually, handled

messages are received by clients, such as application components comprising a

distributed application (160). While the message-oriented middleware can control

how messages are passed between the components it provides, additionally it may

be necessary to assure that messages are actually received successfully prior to

removing messages from the message queue accessed by the client interacting with

the message-oriented middleware to retrieve messages.

Solution

The message-oriented middleware (136) and the client reading a message from a

queue participate in a transaction to ensure transaction-based delivery. All

operations involved in the reception of a message are, therefore, performed under

one transactional context guaranteeing ACID behavior, which is also described by

the strict consistency (123) pattern. As depicted in Fig. 3.23, the message transmis-

sion starts by the sender writing a message to the queue. Then the ACID transaction

is initialized when a receiver reads the message from the queue. As a third step the

message is deleted from the queue, still under transactional context. If one of these

operations performed under this transactional context fails, no alterations

performed by the other operation are persisted. Therefore, it is ensured that a

message is only removed from the message queue if it has been read successfully

by the receiver.

146 3 Cloud Offering Patterns

Result

By delivering messages in a transactional fashion to receivers, the messaging

systems may, therefore, ensure that messages are always delivered successfully

prior to their deletion. The transaction ensures the ACID properties for the message

exchange operations:

• Atomicity: either both, the read operation and the delete operation are executed

or none of them.

• Consistency: after the transaction, the messaging system is in a valid state, thus,

the message is at a specific location, the client, and not somewhere in transit or

lost during transit.

• Isolation: a message is always only handled by one transaction, thus, there may

be multiple clients concurrently reading transactional from the same queue

without interfering with each other.

• Durability: after the transactional message delivery, the message has been

successfully received and this state cannot change in case further network or

system failures occur.

Variations

A similar approach to the transaction-based delivery of messages may be used to

send messages transactional as well. In this scope, the sender of a message

participates in a transaction with the message queue to send a message to it.

Extending the transactional interaction with the message-oriented middleware
(136) to sending of messages can, thus, be used to ensure that message senders

do not create messages twice if unsure if the message was sent successfully. Hohpe

and Woolf [1] summarize this variation and the transaction-based delivery in the

transactional client pattern.

Related Patterns
• Transaction-based processor (201): the transactional message receive pattern

only assures that a message is delivered successfully to a client. If this client

fails, the message can still be lost and is not processed. The transaction may be

extended further on the client side to include the message processing operation

as well. This approach is described by the transaction-based processor (201)

pattern.

3

2 read

delete

ACID Transac�on

ReceiverSender
1 write

Fig. 3.23 Operations of the transactional reception of a message

3.6 Communication Offerings 147

• Timeout-based delivery (149): instead of using a transaction to ensure that a

message is delivered, the message-oriented middleware (136) may resend

messages that may not be received properly as described by this pattern.

• At-least-once delivery (144) and exactly-once delivery (141): these two patterns

describe different assurances that a message-oriented middleware may make

regarding the number of times a message is delivered to a handling application

component. Transaction-based delivery is closely related to exactly-once delivery
(141) as it is assured that a message is deleted from a message queue after it has

been received by a client. However, note that the transaction-based delivery pattern
only considers the message exchange between a queue and the handling application

component. Other message processing performed as the message traverses the

message-oriented middleware may still result in message duplicates. Therefore, if

a message-oriented middleware supports transaction-based delivery of messages,

these messages cannot be considered to be delivered exactly-once as well.

Known Uses

Message-oriented middleware, such as IBM Websphere MQ [142] and Apache

ActiveMQ [143] support the described transactional delivery of messages. Several

standards, such as the Java Message Service (JMS) [145, 146], describe the

protocols used between the message-oriented middleware and the message receiver

[38, 140, 147].

148 3 Cloud Offering Patterns

3.6.6 Timeout-Based Delivery

Clients acknowledge message receptions to ensure that messages are received

properly.

How can it be ensured that messages are only deleted from a
message queue if they have been received successfully at least once?

Context

Internally, message-oriented middleware (136) often assures that messages are not

lost while traversing it. At some point, these messages, however, leave themessage-
oriented middleware when being read from a provided message queue by a client,

for example, an application component part of a distributed application (160). In

addition to ensuring that messages are not lost while they are traversing the

message-oriented middleware it may, thus, also be required to assure that they

are actually received by a client before they are deleted from a message queue.

Solution

To assure that a message is properly received, it is not deleted immediately after it

has been read by a client, but is only marked as being invisible. In this state, a

message is still stored by a message queue but may not be read by another client.

After a client has successfully read a message, it sends an acknowledgement to the

message queue upon which reception the message is deleted. The different steps of

this interaction are depicted in Fig. 3.24. First, a message is written to a queue by a

sender. Second, it is set visible by the queue to be retrieved by receivers. Third, the

message is read and, fourth, set as invisible by the message queue. After the

following acknowledgement given by the receiver as the fifth step, the message is

deleted as step six. However, if a visibility timeout, also referred to as visibility
window, is reached while a message is invisible, thus, if the receiver does not

acknowledge the successful read, the message is made visible again. It may then be

retrieved by other receivers.

Result

A message is only deleted from the message queue if its reception is correctly

acknowledged. In case a message could not be read successfully or the success is

3.6 Communication Offerings 149

unclear, it is retransmitted. Therefore, the delivery behavior between the message

queue and the client is at-least-once (144), thus, a message may be received

multiple times by the same or different clients reading messages from the queue.

Commonly, visibility timeouts of message-oriented middleware (136) range from a

few seconds to minutes and may be configured by customers. Especially, if an

applications wants to extend the receive assurance of messages to assure their

processing as well, as described by the related pattern timeout-based message
processor (204), the visibility timeout should be increased

Related Patterns
• Timeout-based message processor (204): to additionally ensure the proper

processing of a received message, a receiver can acknowledge not only success-

ful reading of a message, but the acknowledgement is sent after a message has

been processed completely. Therefore, a distributed application (160) can then

assure that all messages handled by it are processed at least once (144). In this

scope, a problem may occur if the visibility timeout is shorter than the time it

takes to process the message. The message would then become visible while it is

being processed. The used message-oriented middleware should be configured

carefully to avoid such a condition.

• Transaction-based delivery (146): alternatively to the retransmission of

messages that may not have been received, the message reception and its

deletion from the queue may be summarized in a transaction guaranteeing

ACID behavior, as described by this pattern.

Known Uses

Distributed transactions required for transaction-based delivery can reduce the

performance in large distributed environments and are very complex to implement.

Many cloud-based message-oriented middleware offerings, therefore, provide

timeout-based delivery of messages. Examples are Amazon’s Simple Queue Ser-

vice (SQS) [38] and the messaging service part of Windows Azure Messaging

[140].

Fig. 3.24 Operations of timeout-based reception of a message

150 3 Cloud Offering Patterns

Cloud Application Architecture Patterns 4

This chapter covers architectural patterns that describe how applications have to be

designed to benefit from a cloud environment. Additionally, it is described how

applications themselves can be offered as configurable cloud services. Having

Fig. 4.1 Map of the cloud application architecture patterns

All figures published with kind permission of # The Authors 2014. See list of figures.

C. Fehling et al., Cloud Computing Patterns,
DOI 10.1007/978-3-7091-1568-8_4, # Springer-Verlag Wien 2014

151

introduced cloud service models (see Sect. 2.3 on Page 42) and cloud deployment

types (see Sect. 2.4 on Page 60), this chapter describes patterns that architects and

developers can use to build cloud-native applications, i.e., applications that display
the cloud application properties introduced in Sect. 1.2 on Page 5. Following the

overview, fundamental application architectural patterns cover the architectural

principles found in most cloud-native applications to enable the cloud application

properties. Application component patterns then specify patterns on how to design

and build individual components of a cloud-native application, so that the overall

application can be built on top of an elastic infrastructure (87) or elastic platform
(91). Multi-tenancy patterns describe how cloud applications and individual

components can be shared by multiple customers, so called tenants, on different

levels of the application stack. Cloud integration patterns finally describe

mechanisms on how to integrate multiple cloud environments or cloud

environments and on-premise datacenters as well as applications both in and

outside the cloud.

4.1 Overview of Cloud Application Architecture Patterns

A cloud-native application is an application that embraces the essential cloud

properties: access via network, on-demand self-service, pay-per-use, resource
pooling and rapid elasticity. To be able to incorporate pay-per-use and rapid

elasticity, cloud native applications must be able to elastically scale to be able to

deal with varying workload (see Sect. 2.2 on Page 23). Often, the workload imposed

on different components of the same application is different.

The two fundamental cloud architecture patterns, shown at the top of the pattern

map depicted in Fig. 4.1, form the entry point to this section by describing what

cloud-native applications have to support to enable independent elastic scaling of

different parts of the application. Distributed applications (160) should be

comprised of several loosely-coupled components. Loose coupling (156) means

that application components make few assumptions about each other regarding the

format of exchanged data or the communication channels used, for example.

Components should also not be influenced by the failure of other components. In

essence, the fundamental concepts covered by these patterns are, therefore, the

decomposition of application functionality into separate components and the reduc-

tion of dependencies among these components. The following patterns describe

how different application components of such cloud-native application can be

implemented.

Cloud application components (Sect. 4.3) are characterized by three central

patterns. User interface components (175) provide application functionality to

users. Processing components (180) handle computational tasks. How this

processing can be delayed to be handled when it is most feasible is described by

the batch processing component (185) pattern. Data access components (188)

handle data stored in storage offerings (see Sect. 3.5 on Page 109). They can deal

with storage offerings at different cloud providers with different consistency levels.

152 4 Cloud Application Architecture Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_2
http://dx.doi.org/10.1007/978-3-7091-1568-8_2
http://dx.doi.org/10.1007/978-3-7091-1568-8_1
http://dx.doi.org/10.1007/978-3-7091-1568-8_2
http://dx.doi.org/10.1007/978-3-7091-1568-8_3

Data access components can further be adjusted to inherently support eventual
consistency (126) by abstracting data to hide that there may be data inconsistencies.

This approach is described in the data abstractor (194) pattern. The remaining

application component patterns describe general application component behavior

that can be combined with all other application component patterns. The stateful
component (168) pattern and its alternative, the stateless component (171) pattern
describes how application components can maintain their own internal state or

rely on external state information maintained in storage offerings (see Sect. 3.5 on

Page 109), respectively. In this scope, we consider state to subsume session state –

the state of interactions with components and application state – the data handled

by the application, as introduced on Page 6 in Sect. 1.2. When dealing with state

different consistency patterns such as eventual consistency (126) or strict consis-
tency (123) have to be considered by developers.

With respect to the cloud properties, stateless components (171) should be

preferred in applications by storing all state of an application in provider-supplied

elastic storage offerings, because application components can be made elastic
easier. Processing power can be adjusted by merely adding and removing instances

of individual application components without having to respect the state handled by

them. This also enables cloud applications to benefit from the elasticity and pay-

per-use pricing models, because cloud resources can flexibly be added to and

removed from the application. How elasticity is handled during cloud application

management (Chap. 5) and the complexity involved, therefore, largely depends on

the fact whether a component is a stateful component or a stateless component.
Thus, splitting applications into stateless user interface components and stateless

processing components coupled via asynchronous messaging over a message-
oriented middleware (136) is good architectural approach to elastically scale user

interfaces independently from processing components. We describe this architec-

ture in greater detail in the two-tier cloud application (290) and three-tier cloud
application (294) patterns in Chap. 6. The batch processing component (185)

pattern processing workload only when it is most feasible, i.e., because of resource

price or utilization can also be used to decouple user interfaces from backend

processing.

As distributed components are often loosely coupled (156) via messaging, the

behavior displayed by the message-oriented middleware (136) becomes important

for the overall application. In case the messaging system assures at-least-once
delivery (144), receiving components must deal with duplicate messages and,

thus, implementing the idempotent processor (197) pattern. Furthermore, a mes-
sage-oriented middleware can ensure that messages are received successfully,

either using transactions described by the transaction-based delivery (146) pattern
or by re-transmitting messages if the receive is not acknowledged after a timeout as

covered by the timeout-based delivery (149) pattern. The assurance that a message

is received by an application can be extended by application components to ensure

that messages are successfully processed by them as well. The patterns transaction-
based processor (201) and timeout-based message processor (204) describe the

4.1 Overview of Cloud Application Architecture Patterns 153

http://dx.doi.org/10.1007/978-3-7091-1568-8_3
http://dx.doi.org/10.1007/978-3-7091-1568-8_1
http://dx.doi.org/10.1007/978-3-7091-1568-8_5
http://dx.doi.org/10.1007/978-3-7091-1568-8_6

assured processing of messages delivered according to the respective delivery

patterns. The transaction-based processor (201) can also be used to interact with

storage offerings in the same fashion.

Having described the different application components, the following section

describes multi-tenancy patterns (Sect. 4.4) on how to deal with resource sharing

among different applications and customers. The shared component (210) provides
functionality to different tenants without maintaining a notion of tenants itself. The

tenant-isolated component (214) does the same but ensures that tenants do not

influence each other while they access shared functionality. The dedicated compo-
nent (218) pattern enables some functionality to be provided exclusively to tenants

without sharing it with others.

Cloud integration patterns (Sect. 4.5) describe special application components to

enable the communication across cloud boundaries, as applications are often not

standalone and must be integrated with other cloud applications and non-cloud

applications. A restricted data access component (222) extends the functionality of
the data access component (188) to incorporate data obfuscation if sensitive data

may not be retrieved completely from a less secure environment. Alternatively, data

may be replicated between environments. During this replication data may be

altered transparently to adhere security regulations, laws, etc., as described by the

compliant data replication (231) pattern. These different environments may be

integrated using an integration provider (234). When using asynchronous messag-

ing, message movers (225) ensure that queues at different providers can be

integrated into logical queues and, thus, applications can be split across different

hybrid clouds (75). An application component proxy (228) makes complete appli-

cation components accessible in different environments even if the communication

between these environments is restricted.

Side Note: we covered best practices how to design application

functionality to provide user interfaces, processing, or data access

in separate patterns, however, the implementation of these patterns

does not have to result in multiple application components in a built

application. Depending on the deployment type, it may be more

efficient to have a single developed application component

implement multiple application component patterns described in

this section. Thus, the architecture of a cloud application should

consider logical components that are subsumed to tiers hosted on

cloud resources. The distributed application (160) pattern describes
this decomposition of application functionality into components

and their assignment to tiers. We, furthermore, cover common

tiers in cloud application in the two-tier cloud application (290)

and three-tier cloud application (294) patterns in Chap. 6.

154 4 Cloud Application Architecture Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_6

4.2 Fundamental Cloud Architectures

The patterns in this section cover the fundamental architectural styles that architects

and developers have to be aware of when building a cloud-native application. From

the areas of grid computing, service-oriented architectures, and messaging systems,

certain architectural best practices have emerged. These are generally applicable to

distributed systems and, therefore, can also be used in cloud computing. For

application developers and architects it is of great importance to understand that a

cloud-native application almost always is a distributed application. This is the fact

as a cloud-native application is almost never deployed on one single (virtual) server

but is scaled-out, thus, it spans at least two or more distributed nodes because of

the need for horizontal scalability (see Page 6 in Sect. 1.2) and availability. With the

adoption of the different cloud service models (see Sect. 2.3 on Page 42) – IaaS,
PaaS, and SaaS – and the corresponding cloud offerings (see Chap. 3) cloud-native
applications become even more distributed as different layers and functionality of

the application can be handled by different cloud offerings. In the distributed
application (160) pattern we describe various architectural approaches for

decomposing application into distributed components.

When building cloud-native distributed applications, regardless of the concrete

approach chosen, loose coupling (156) among the distributed components is a key

success factor. Symptoms of tightly coupled components such as fixed addressing

or the assumption of synchronous instantaneous communication hinders elastic

scaling one of others, because they depend on each other’s location and availability.

Further Reading: the architectural styles fundamental to

cloud computing are similar to those of distributed systems,

service-oriented architectures, and messaging systems.

Tanenbaum [127] covers the fundamentals of distributed

systems that are also relevant in many patterns of this

book. An introduction to services-oriented architectures is

given by Krafzig et al. [10] and Weerawarana et al. [9].

Messaging concepts have been captured by Hohpe and

Woolf [1]. Most of these messaging patterns can be

applied in cloud computing without change and are also

used in this book.

4.2 Fundamental Cloud Architectures 155

http://dx.doi.org/10.1007/978-3-7091-1568-8_1
http://dx.doi.org/10.1007/978-3-7091-1568-8_2
http://dx.doi.org/10.1007/978-3-7091-1568-8_3

4.2.1 Loose Coupling

A communication intermediary separates application functionality from

concerns of communication partners regarding their location, implementation

platform, the time of communication, and the used data format.

How can dependencies between distributed applications and
between individual components of these applications be reduced?

Context

Resources provided by clouds are distributed by design and often enforce a similar

distribution of application functionality among these resources. How applications

can be decomposed into distributed components is described in the distributed
application (160) pattern. In this scope, the individual application components

have to be integrated to form a uniform application. For such applications informa-

tion exchange and management tasks, such as scaling, failure handling, or update

management can be simplified significantly if application components can be

treated individually and the dependencies among them are kept to a minimum.

For example, the effects that a failing component has on other components should

be minimal to reduce the amount of components to be replaced or reconfigured if

one of them fails. Similar challenges are also faced when multiple applications,

such as cloud applications and legacy applications have to be integrated, thus, they

have to communicate and exchange data. Therefore, the dependencies among

components shall be reduced, so that the addition, removal, replacement, or update

of one component has minimal to no impact on other components communicating

with it.

Solution

Communicating components and multiple integrated applications are decoupled

from each other by interacting through a broker. This broker encapsulates the

assumptions that communication partners would otherwise have to make about

one other and, thus, ensures separation of concerns. The broker concept has also

been introduced as a pattern by Buschmann et al. [14]. To ensure loose coupling,
a broker enables four degrees of autonomy between communication partners:

156 4 Cloud Application Architecture Patterns

• Platform autonomy: communication partners may be implemented in different

programming languages and are executed by different execution environments
(104). Differences in these platforms regarding data representation, processor

architecture etc. are unimportant for the communication.

• Reference autonomy: communication partners have to be addressed on the

network. They shall be unaware of the concrete address of each other and also

of the number of communication partners with which they interact.

• Time autonomy: communication partners can exchange information even if one

of them is temporarily unavailable. Also, they may send and receive information

at their own speed, thus, if one communication partner transmits information

faster than another one, both remain operational.

• Format: when data is sent over a remote connection, it has to be serialized into

an exchange format by the sender and de-serialized by the receiver. Communi-

cation partners shall be unaware of the other party’s format and shall receive data

in the format they support.

The broker can, therefore, be accessed from different implementation languages,

handles addressing of communication partners, request routing and the transforma-

tion of exchanged data if the serialization formats used by communication partners

differ. These concerns may be handled more efficiently in a specifically designed

broker than in each communication partners’ implementation. Therefore, the imple-

mentation complexity is reduced as communication partners may rely on a highly

specialized, highly available intermediary. The fewer assumptions two components

make about each other, i.e., the more degrees of autonomy are ensured, the looser

they are coupled and the more robust and flexible is their integration.

Result

Many cloud offerings already support such a loose coupling. Here, we cover the use
of a message-oriented middleware (136) and an enterprise service bus (ESB)

realizing the intermediary depicted in Fig. 4.2.

A message queue offered by a message-oriented middleware (136) enables

asynchronous communication for application components, takes care of message

addressing and routing as well as message format transformation. But it is

important to note that loose coupling is not ensured alone by the intermediary.

The communication partners integrated by an intermediary have to ensure that the

format of the exchanged information can be processed by the intermediary to

fulfill its purpose. If the exchanged information is serialized to a format that

cannot be read by the intermediary, it likely needs to be extended with custom

functionality. Assuming that the used intermediary supports such an extension,

the format transformation complexity still has to be completely handled by the

developer. To ensure loose coupling a standardized serialization format should,

therefore, be used to transfer data to rely on intermediary functionality that still

has to be configured but not implemented individually. Examples of such data

4.2 Fundamental Cloud Architectures 157

format standards are the Extensible Markup Language (XML) [148], the Java

Script Object Notation (JSON) [97], or SOAP [149], which is also normally

serialized as XML.

An enterprise service bus (ESB) [10, 11] can also serve as an intermediary to

ensure loose coupling in a service-oriented architecture (SOA) [10]. This architec-

ture style considers functionality to be provided by services accessible over a

network via a well-defined interface. Services are, therefore, one way to realize

the application components of a distributed application (160). An ESB acts as a

broker between service consumers and service providers enabling the above men-

tioned separation of concerns. Especially, it may subsume the functionality of a

message-oriented middleware (136) and bridge between asynchronous message

exchange and synchronous service invocations, for example, by supporting syn-

chronous and asynchronous protocols for SOAP [149] messages.

By following the loose coupling pattern regardless of the used middleware,

applications and their components, thus, do not know the concrete address of a

communication partner, or the data formats supported by it, and do not rely on the

partner to be available at the time when they communication is initiated or to

support the necessary communication speed. Loose coupling can, however, can

have some drawbacks. Application performance can be impacted as communica-

tion through a broker may add overhead to the information exchanged. Data needs

to be serialized and de-serialized by communication partners and for the processing

performed by the broker. Additionally, the communication path is longer and

includes address resolution and format transformation functionality.

Therefore, when designing an application it commonly has to be weighed

between loose coupling, application performance, and the complexity of imple-

mentation and debugging. In clouds where applications shall scale out elastically,

loose coupling is, however, often more desirable than the efficient use of individual

cloud resources.

Related Patterns
• Distributed application (160): this pattern describes fundamentals for the logical

decomposition of application functionality into components. These components

Fig. 4.2 Realization of loose coupling through an intermediary

158 4 Cloud Application Architecture Patterns

may be summarized to multiple tighter-coupled tiers to ensure performance. The

individual tiers are then integrated according to the loose coupling pattern.

• Two-tier cloud application (290) and three-tier cloud application (294): two

common summarizations of application components to loosely coupled tiers of a
cloud application are covered by the two-tier cloud application (290) pattern and
the three-tier cloud application (294) pattern. These patterns describe how the

discrepancy between performance and flexibility should be weighted for smaller

and larger cloud applications, respectively.

• Hypervisor (101): this pattern ensures loose coupling of a virtual server and the

physical hardware on which it is deployed. The application that may be installed

in such a virtual server, however, loses access to any physical hardware that it

may require.

• Eventual consistency (126): storage offerings providing eventual consistency

aim at making replicas of data required for availability coupled looser. By doing

so, the storage offering becomes more resilient towards network partitioning and

can be distributed among a large number of resources more efficiently.

• Message-oriented middleware (136): as pointed out in the result section, a

message-oriented middleware and provided message queues allow avoiding

connectivity dependencies between communication partners and may also han-

dle message format transformations.

• Watchdog (260): loose coupling simplifies the implementation of this pattern

significantly. A watchdog monitors resources and application components for

failures, especially, needed if the cloud provider assures environment-based
availability (98). If a failure is detected, the watchdog decommissions the failed

component and replaces it with a newly provisioned one automatically. If the

components supervised by a watchdog are loosely coupled, this resiliency

management becomes significantly easier. Loosely coupled components have a

lesser impact on each other if one of them fails and the integration of a

replacement component into the application requires fewer to none reconfigura-

tion of existing component.

Known Uses

Loose coupling is one of the fundamental concepts of service oriented computing

(SOC). Its realization in a service-oriented architecture (SOA) is described in great

detail by [9], [11] and [10]. Loose coupling between applications and their

components through messaging is described by Hohpe and Woolf [1]. They also

motivate the use of a canonical data model to simplify format translation between

different message formats.

4.2 Fundamental Cloud Architectures 159

4.2.2 Distributed Application

A cloud application divides provided functionality among multiple application

components that can be scaled out independently.

How can application functionality be decomposed to be handled by
separate application components?

Context

Cloud applications have to rely on multiple, possibly redundant IT resources to

ensure that the unavailability of one IT resource does not affect the application as a

whole. Furthermore, clouds are designed to scale out and not scale up, as described

by the essential cloud properties in Sect. 1.1 on Page 3, thus, applications have to

add more IT resources rather than increasing the capabilities of a single resource to

increase their performance. However, applications have to respect the distribution

and the scaling-out support of this environment in their architecture to efficiently

benefit from it.

Monolithic applications that are not distributed, but subsume all functionality of

an application for user interaction, processing, and data handling into a single

component and are deployed on a single IT resources, i.e., one server. Such

applications are often less suitable for a cloud environment due to two

characteristics. First, the individual availability and performance of a single IT

resources offered by a cloud can be insufficient for the requirements of the

applications. This can especially be the case if the cloud provider assures environ-
ment-based availability (98) – the availability of the complete environment and not

of single IT resources hosted in it. For example, the provider could only assure that

customers can provision servers and does not assure availability of running servers

at all. Even if the provider assures node-based availability (95) – the availability of
individual IT resources, such as servers, the assurance may be insufficient for the

application calling for a redundant deployment. The second characteristic making

monolithic applications less suitable for a cloud environment is their inability to be

scaled out efficiently as multiple instances of the whole application have to be

provisioned instead of scaling the different functionality offered by the application

independently.

160 4 Cloud Application Architecture Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

Solution

The functionality of the application is divided into multiple independent

components that provide a certain function. Later, these components are integrated

to form a distributed application. This componentization of application functional-

ity introduces a logical decomposition of the application. These logical components

are subsumed to multiple tiers to denote that they shall be deployed together

physically, i.e., on one server (cluster). Tiers are, thus, deployed separately on

distributed IT resources provided by the cloud environment. When integrating the

tiers to a complete distributed application, loose coupling (156) is ensured to

reduce the impact of component failures on other components.

Side Note: the terms “layer” and “tier” are often used

interchangeably. In this book, we wanted to differentiate between

a decomposition that can be based on logical layers of an

application into components and the summarization of these

components to physical tiers hosted in a cloud environment.

Sometimes, especially, in scope of PaaS (49), each component can

be a tier, but the summarization of logical application components

into physical tiers should always be considered carefully, because

communication between components in a tier is usually more

efficient while loose coupling (156) between tiers makes the

application more robust and scalable. In Chap. 6, we cover a two-
tier cloud application (290) and a three-tier cloud application (294)
in greater detail.

Result

The mapping of application components to tiers is mainly influenced by the cloud

service model used by the provider. If a provider offers and elastic platform (91) as

PaaS (49), each application component is often deployed individually and

integrated with other application components using provider-supplied communica-

tion offerings, for example, a message-oriented middleware (136). However, logi-
cal application components may also be summarized to be deployed together. If the

provider offers an elastic infrastructure (87) as IaaS (45), the application architect

can influence the summarization of application components to a higher degree as

the customer has to specify the distribution of application components among the

provided virtual servers. In the following, we cover three different logical decom-

position approaches of applications into separate components and the

corresponding physical tiers for IaaS (45) and PaaS (49) environments. The

covered decompositions are based on layers of the application stack on which a

component resides (layer-based decomposition), centered on the processes that an

4.2 Fundamental Cloud Architectures 161

http://dx.doi.org/10.1007/978-3-7091-1568-8_6

application supports (process-based decomposition), and focus on data elements

handled by the application that traverse a set of components for processing (pipes-
and-filters-based decomposition).

Layer-based decomposition: this decomposition approach divides the applica-

tion into separate logical layers. Often, the three layers, user interface, processing,

and storage are used as depicted in Fig. 4.3, but more layers may also be introduced.

Each layer is comprised of application components providing a certain function.

Components are restricted to access components of the same layer or one layer

below. This restriction avoids complicated interdependencies among components

and enforces a well-defined interface description for communication between

layers.

Often, layers used during the decomposition are mapped to tiers to be deployed

to an elastic infrastructure (87) or elastic platform (91). For the above example, this

results in a three-tier architecture also described by Tanenbaum [127]. In scope of

an elastic platform (91) components may also be deployed directly without group-

ing them. In this case, the communication offerings used to loosely couple (156) the
different layers is also used within a layer to exchange information between

components.

Process-based decomposition: this decomposition style focuses on the business

processes supported by the application. These processes are comprised out of

activities that are executed in a specific order. Activities, their execution order,

and data elements handled by the process are described by executable business

process models, as depicted at the top of Fig. 4.4. The functionality accessed by the

Fig. 4.4 Process-based

decomposition

Storage

Processing

User Interface
Fig. 4.3 Exemplary

decomposition into three tiers

Fig. 4.5 Pipes-and-filters-

based decomposition

162 4 Cloud Application Architecture Patterns

activities of the processes is decomposed into separate components. Activities

interact with these components comprising the distributed application. During
this enactment required information is passed to the invoked application component

and results are stored in the business process. Business process models are executed

by a specific runtime, called a process engine. A process engine can handle multiple

process models and instantiates a model every time a process is started. The running

process instance then contains the values of data elements handled by the process

and maintains the state of execution, i.e., it controls which activities of the process

are active.

One tier of an application decomposed in this fashion is often the process engine

handling the execution of the business process. It can be hosted on a virtual server

provided by an elastic infrastructure (87), but may also be provided by an elastic
platform (91) to which process models can be deployed directly. Other application

components should be summarized to tiers regarding similar functionality they

provide to the process.

Pipes-and-filters-based decomposition: the pipes-and-filters pattern for appli-

cation architecture for data-centric processing of an application has been described

by Gamma et al. [2], Buschman et al. [14], and Hohpe and Woolf [1]. Each filter

provides a certain function that is performed on input data and produces output data

after processing. Multiple filters are interconnected with pipes ensuring that the

output of one filter is fed to the next filter in a processing chain. In a distributed
application, filters map to application components that provide a certain function

and are interconnected using communication offerings provided by a cloud. Pipes-

and-filters-based decomposition, therefore, identifies components performing a

certain function on input data that traverses different processing steps. Data may

be provided as fixed data elements or as a stream of data that is continuously

processed by the application.

Pipes and filters are, for example, used in Unix operating systems to connect

multiple commands [14] or in digital picture processing to manipulate images in a

certain order. In scope of distributed applications and the realization of multiple

tiers, components should be deployed independently. To ensure loose coupling
(156) the communication through pipes should be asynchronous, for example, using

message queues provided by a message-oriented middleware (136) as depicted in

Fig. 4.5. This implementation is also suggested by Hohpe’s and Woolf’s [1] use of

the pipes-and-filters pattern. Each component receives input from a queue, pro-

cesses the messages, and writes it to an output queue. Larger data elements may be

exchanged using other communication channels, for example, folders provided by a

blob storage (112). Due to this asynchronous communications, applications

components never interact directly with other components making them signifi-

cantly easier to scale or replace in case of failures.

Regardless of the decomposition style followed, the application is divided into

multiple components, each providing a certain set of the required application

functions. These components are then composed to form the integrated functional-

ity that the distributed application shall offer. Due to this architecture, the applica-

tion remains extensible as boundaries between components are clear and interface

4.2 Fundamental Cloud Architectures 163

and communication styles are well-defined. Therefore, new components can be

added and integrated with the application easier. Furthermore, the integration of

other applications, for example, legacy applications, is simplified as whole

applications can be integrated similarly to individual components.

A critical design decision for distributed applications is the number of physical

tiers to which logical application components are summarized. The distribution of

functionality among separated components and tiers, thus, the optimal granularity

of components has to be found. If too few components are created, integration of

new functionality and changing the application flexibly, i.e., for scaling, can still be

a complex task. If the functionality is distributed among too many components

assigned to too many loosely coupled (156) tiers, the necessary communication

overhead can become too high for the application to be executed efficiently. The

two-tier cloud application (290) and three-tier cloud application (294) patterns

discuss the efficient assignment of application components of a distributed appli-
cation under different conditions.

Further Reading: Cheesman and Daniels [150] describe

how to use components in object-oriented programming.

Eels and Cripps [151] cover the process to design a software

architecture. Especially, they cover different viewpoints

on the architecture to design functional and structural

aspects. Daigneau [152] covers patterns for service design

that can be used to create the orchestrated application

components in scope of the above mentioned process-

centric decomposition. Weerawarana et al. [9] describe

technologies used for the implementation of these

services. Leymann and Roller [76] cover the modeling

and execution of business processes in depth.

Related Patterns
• Loose coupling (156): it is very important, that a distributed application avoids

dependencies between application components to scale components indepen-

dently and to avoid that failing components impact each other.

• Message-oriented middleware (136): asynchronous communication between

application components of a distributed application is very important to enable

loose coupling (156). A message queue provided by a message-oriented
middleware offers functionality for such asynchronous message exchange.

• Blob storage (112): as pointed out above, this storage offering may be used in

distributed applications to exchange larger data elements than those that can be

transmitted using messages.

164 4 Cloud Application Architecture Patterns

• Two-tier cloud application (290): this pattern describes a common layer-based

decomposition used for cloud applications. It describes the different tiers and the

patterns implemented by them.

• Three-tier cloud application (294): this pattern describes a more complex layer-

based decomposition than the two-tier cloud application (290) resulting in three

loosely coupled (156) tiers that may be scaled independently. The IT resources

used by this application can, therefore, be aligned even more flexibly to the

current demand experienced by each tier.

• Cloud application components (Sect. 4.3): the patterns covered in the following

section describe how different functionality decomposed into application

components may be implemented to support the cloud computing properties

described in Sect. 1.1 on Page 3.

• Processing component (180): the processing component pattern covers an exem-

plary decomposition of processing functionality for a video conversion

application.

Known Uses

The decomposition of application functionality into application components and

the later summarization of these components to tiers is also described by Youngs

et al. [153]. Varia [93, 154] generally motivates why applications should be split

into separate components when using the Amazon AWS [138] cloud. Zimmerman

et al. describe the decomposition of an application in the finance industry [155] as

well as a process-centric decomposition of an order management scenario [156].

The T-Systems Process and Service Platform (PSP) uses service-oriented principles

to offer services and processes of the public sector [157] in a community cloud (71).
Languages for such process model specification are, furthermore, the Business

Process Execution Language (BPEL) [158] or the Business Process Model and

Notation (BPMN) [159]. Leymann and Roller [76] give detailed background

information about composition languages. Application components invoked by a

process instances in such a fashion are often implemented as Web services [9] and

provide interfaces in the Web Service Description Language (WSDL) [160] format.

Buschmann et al. [14] cover the layers pattern describing how application

functionality may be decomposed into separate layers to structure an application.

A similar decomposition is used by a Service Oriented Architecture (SOA) [9, 10]

introducing the separation of application functionality into multiple independent

services. Both approaches are, therefore, applicable in the domain of cloud com-

puting even though they have been established long before the concept of cloud

computing arose. Actually, the approach to layer application can be traced back

even further to distributed systems in general as covered by Tanenbaum [127]

where it is predominant to ensure their manageability and reduce complexity. Also,

operating system architectures use this approach to manage complexity. The Open

Systems Interconnection Reference Model (OSI-Model), for example, separates

networking functionality into different layers.

4.2 Fundamental Cloud Architectures 165

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

4.3 Cloud Application Components

When building a cloud-native application following the two fundamental principles

of distributed applications (160) and loose coupling (156) covered in the previous

section, an important follow-up design activity of an architect is to define how the

application handles state. With elasticity in mind, one of the cloud application

properties described in Sect. 1.2 on Page 5, it is important to specify which

components of the application are stateful and which are stateless. As defined in

the introduction on Page 6 in Sect. 1.2, we use these the term “state” to refer both

session state – the state of client interaction with an application component and

application state – the data handled by the application. Stateful components (168)
carry state that is lost if the component or the underlying platform or infrastructure

fails. Stateless components (171) are components that can be added and removed

more easily as they delegate all their non-transient state to stateful components (168)
or storage offerings (see Sect. 3.5 on Page 109). This distinction between stateful
components (168) and stateless components (171) is important when dealing with

cloud-native applications as it gives a good first hint which components can be

elastically scaled more easily and where state needs to be kept and, thus, elastic

scaling is harder to implement or should be delegated to a provider-supplied

offering. Additionally, it is important to identify whether a consistent state is

required or not by the business usage scenarios. If not, user interface components
(175) or other application components may become data abstractors (194) that hide
data inconsistencies from other application components.

When dealing with elasticity requirements it may also be helpful to implement

processing-intensive business logic as separate processing components (180), that
handles requests as they receive them (asynchronously or synchronously), or as

batch processing components (185) that collect requests and work on them in batch.

Regarding the access to storage offerings, for example, in a processing compo-

nent, the data access component (188) pattern describes how to encapsulate the data

access. The idempotent processor (197) pattern, then, deals with the situation, that

requests may arrive multiple times but should only affect the state of an application

once. Requests may arrive multiple times, for example, when they are routed by a

message-oriented middleware (136) that supports at-least-once delivery (144).

Similar challenges may arise if the data processing component accesses an eventu-
ally consistent (126) data store. Thus, it is important to deal with such situations in

cloud-native applications.

Two other patterns deal with the processing of messages that are received via a

message-oriented middleware (136) to assure that messages are processed success-

fully. The first approach is to implement the transaction-based processor (201)

pattern that interacts in a transaction with the message-oriented middleware. The
transaction begins by reading of the message from the queue. The message is then

locked until the transaction is committed or aborted by the transaction-based
processor. In case of a successful processing, the message is deleted from the

message queue and the transaction is committed. If the processing fails,

the transaction is aborted and the message remains in the message queue.

166 4 Cloud Application Architecture Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_1
http://dx.doi.org/10.1007/978-3-7091-1568-8_1
http://dx.doi.org/10.1007/978-3-7091-1568-8_3

The transaction-based processor also describes this style of interaction with storage

offerings. The second approach to assure message processing is to implement a

timeout-based message processor (204) accessing a corresponding message-
oriented middleware. In this case, a message is made invisible once a receiver

has taken it from the message queue and the messaging middleware waits for the

receiver to acknowledge message processing. If processing has not been explicitly

acknowledged after a certain timeout period by the receiver the message is made

visible again to all receivers. The last pattern we cover in this section is the multi-
component image (206) pattern which describes howmultiple components of one or

several applications can be deployed on one the same virtual server of an elastic
infrastructure (87).

4.3 Cloud Application Components 167

4.3.1 Stateful Component

Multiple instances of a scaled-out application component synchronize their

internal state to provide a unified behavior.

How can applications components that are scaled-out maintain a
synchronized internal state?

Context

To benefit from a distributed cloud runtime environment, components of a

distributed application (160) are deployed to multiple cloud resources. Loose
coupling (156) between these components ensures that they may be instantiated

multiple times for scaling them out. Some of these application components may

need to maintain an internal state. This state may, for example, reflect a list of items

that a user of a Web shop has added to his or her shopping basket. As an application

component is scaled-out, the challenge arises that individual instances should

contain the same internal state, so that they present a unified behavior.

Solution

The internal state maintained by application component instances is replicated among

all component instances as depicted in the right side of Fig. 4.6. Only small portions of

shared information are used, for example, all instances of a stateful component may

still share a configuration file stored centrally or have the configuration send to them

by clients with every request. The application developer, therefore, faces similar

challenges as the provider of a cloud storage offering and has to decide whether this

replication should be performed ensuring strict consistency (123) or eventual consis-
tency (126). Each client request is associated with a unique identifier as shown in the
left side of Fig. 4.6. This identifier is used by the stateful component to retrieve the

correct data associated with a client request from its internal storage.

Result

Upon each data manipulation accessing the stateful component, the new state is

updated among the deployed instances. This update may be performed in a strict

168 4 Cloud Application Architecture Patterns

consistent (123) or eventual consistent (126) manner, which significantly affects the

behavior that the application component displays to users. In the following both

approaches are described in greater detail.

In case of strict consistency (123), read and write operations access a subset of

the instances. These subsets are configured to overlap regarding the overall number

of deployed instances, so it is ensured that each read operation accesses at least one

instance with the most current data version. For more information about this

replication and how the ratio should be between instances accessed during read

operations and write operations, refer to the strict consistency (123) pattern. The

application component keeps an internal state that may be altered externally. Such

stateful components assuring strict consistency (123) are, for example, obtained

when installing database software on virtual servers provided by an elastic infra-
structure (87). Clustering abilities of this software may then be used to distribute

the state among multiple virtual servers increasing the availability of the stateful
component.

In case of eventual consistency (126), read and write operations access a reduced
number of instances, possibly only one instance. After data has been manipulated,

the new data version is replicated asynchronously to all instances. For this purpose,

message queues offered by a message-oriented middleware (136) may be used.

Therefore, the availability of the stateful component is increased as fewer instances
have to be available to execute a read or write operation. Performance may also be

increased if the component instances are distributed among a large, possibly global,

connection network. In such a setup, accessing large sets of instances required for

strict consistency may be ineffective due to network communication delays and is,

therefore, avoided. The downside of this eventual consistent update propagation is

that users may be served with obsolete data if they access an application component

instance that has not been updated. Similar to the strict consistent stateful compo-
nent, database software exists that handles data updates between replicas in an

asynchronous eventually consistent fashion.

Variations

Based on the identifier associated with requests of customers or their components,

requests may be routed only to a specific number of component instances. In very

large setups handling many customers, this may simplify the data replication as the

number of instances handling specific customers is reduced. This approach may,

config

ID

Request
Internal State

config

Fig. 4.6 Stateful application

components

4.3 Cloud Application Components 169

thus, be used to create smaller clusters of component instances handling a specific

customer among which replication may be performed more efficiently.

Related Patterns
• Stateless component (171): to implement stateful application components,

developers have to handle the complex replication of state information among

component instances. If possible, this should be avoided by storing all state

information in storage offerings (see Sect. 3.5 on Page 109) accessed by stateless
components (171). In this scope, the developer is only concerned about the

custom application functionality that is implemented in stateless components.
All instances of these components share an external state held by the storage

offerings. Furthermore, stateful components are significantly harder to manage

than stateless components (171), because the management patterns (see Chap. 5)

implemented in the cloud application have to respect the internal state of the

stateful component instances.
• Managed configuration (247): the above mentioned concept to manage common

configuration files centrally is described in further detail by this separate pattern.

Known Uses

Tanenbaum [127] covers different approaches to store an update state in distributed

applications as well as the related interaction protocols. Fowler [15] also discusses

different approaches to handle state on the client side and the server side. In general,

a stateful component is any implementation of the storage offerings relational
database (115), key-value storage (119), blob storage (112), or block storage
(110) that is not provider-supplied or managed by the application itself. Therefore,

if a customer obtains a virtual server from an IaaS (45) cloud providing an elastic
infrastructure (87), an installed relational database (115), for example, MySQL

[112] or key-value storage (119), for example, Apache MongoDB [122] can be

considered a stateful component. As these installations of storage offerings are

managed by the customer, the challenges described in the stateful component
pattern have to be handled by the customer himself or herself.

170 4 Cloud Application Architecture Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_3
http://dx.doi.org/10.1007/978-3-7091-1568-8_5

4.3.2 Stateless Component

State is handled external of application components to ease their scaling-out

and to make the application more tolerant to component failures.

How can elasticity and robustness of an application component be
increased?

Context

The components of a distributed application (160) are deployed among multiple

cloud resources to benefit from this distributed runtime environment through

scaling out. As resources may fail, this distribution of components among multiple

resources makes the application dependent on the availability of all these resources.

The chance that a resource failure occurs that affects the application is increased

with a higher degree of distribution. Especially, resources of public clouds (62) may

display a low node-based availability (95) or environment-based availability (98)

that makes no assurances regarding individual resources. Therefore, distributed
applications often have to be enabled to cope with failing application components

and need to handle their replacement. But not only failures demand that application

components are removed from or added to a distributed application. If the applica-
tion is scaled out elastically, component instances are also added and removed

regularly according to the currently experienced workload. This is especially the

case if the application has to handle periodic workload (29), unpredictable work-
load (36) or continuously changing workload (40).

The most significant factor complicating addition and removal of component

instances is the internal state maintained by them. In case of failure, this informa-

tion may be lost. If an instance shall be removed from the application, the internal

state has to be extracted and stored elsewhere. If a new instance shall be added to

the application, its internal state has to be initialized before it may function

properly.

Solution

Application components are implemented in a fashion that they do not have an

internal state. Instead, their state and configuration is stored externally in storage

offerings (see Sect. 3.5 on Page 109) or provided to the component with each

4.3 Cloud Application Components 171

http://dx.doi.org/10.1007/978-3-7091-1568-8_3

request, as shown in Fig. 4.7. An identifier (ID) may be associated with requests to

retrieve the required information from the external storage.

Result

In scope of Web applications, the term “stateless” is commonly used to refer to the

state of a session between a client and a Web server. This session state can hinder

spreading client requests among multiple servers to scale an application horizon-

tally. As every request could possibly be handled by a different server, this server

may be unaware of previous interaction with a client hindering it to produce correct

results. For example, if the content of a shopping cart of an online shop application

was to be stored on the server-side, multiple servers would have to keep the content

of the shopping cart, i.e., the session state in sync. Therefore, it is a best practice in

Web applications to keep the session state on the client-side and send it with every

request of a client to the Web applications, so called REST [72] style interaction

(see known uses). This interaction style allows every request to be handled by an

arbitrary server. The stateless component pattern extends this best practice by not

only considering session state, but also application state – the data handled by

application components. Applications state is a result of client accesses to functions

provided by the cloud application by which they manipulate the data handled by the

application. Keeping this state in sync between multiple instances of an application

component hinders the cloud application to be scaled elastically. Therefore, the

stateless component pattern motivates to provide the session state with every

request just as the best practices for Web applications. Furthermore, it extends

this notion of statelessness by keeping the application state external of its imple-

mentation making instances of the stateless component easier to provision and

decommission.

Since the stateless component instances do not have an internal state, no data is

lost if an individual instance fails. This statelessness significantly increases the

capability of the distributed application (160) to scale out, because multiple

components can share a common external state and, thus, act as if they all had

the same internal state. Furthermore, no data is lost if one component instance fails.

Provisioning and decommissioning of components, part of elastic scaling

operations, is simplified by this. However, the ability to scale out now depends

significantly on the scalability of a provider-supplied storage offering or application

config

config

External State

ID

Request

Fig. 4.7 Stateless application components

172 4 Cloud Application Architecture Patterns

component handling the external state – a stateful component (168). In both cases,

the performance of the communication between stateless components and stateful
components (168) or storage offerings is also of vital importance.

Variations

To reduce the amount of requests to the central data store and to avoid the delay that

may occur from remotely accessing this storage, component instances may keep

local replicas of the centrally stored state information. For this purpose, they usually

store results of queries to the central data store temporarily, a concept known as

caching [127]. Data stored in these caches may, however, be of an older version

than the data stored centrally. Therefore, the use of caching can lead to an eventu-
ally consistent (126) behavior of the application.

Related Patterns

Stateless components may use cloud offerings to manage a central state:

• Relational database (115), key-value storage (119): these storage offerings may

be used for table-based centrally stored data. Relational databases may, how-

ever, be less scalable due to the complexity and interdependencies caused by the

enforced data structure. Due to this complexity relational database offerings can

also be more expensive as they are more complex, but they often guarantee strict
consistency (123). Key-value storage enforces much less structure on the data

handled by them and do often not perform data integrity checks. Therefore, this

complexity will then have to be handled in the distributed applications (160).
The required functionality may be encapsulated in data access components
(188).

• Blob storage (112): this type of central storage offering is commonly used for

large data elements. It is good practice that components of a distributed appli-
cation do not communicate via these data elements but reference them in

relational databases, key-value storage, or pass references via messages.

Messages can be exchanged through message queues provided by a message-
oriented middleware (136).

• Message-oriented middleware (136): if application components process messages,

the state may be contained completely in the messages. In this scope, components

often have to assure that messages are only deleted from a message queue if they

have been successfully processed. Possible implementations are described by

the transaction-based processor (201) pattern and the timeout-based message
processor (204) pattern.

4.3 Cloud Application Components 173

Known Uses

It is a central principle of the REST [72, 161] architectural style to transmit the state

each time a component is accessed. As mentioned above, shopping baskets in Web

stores are often realized this way. Web services [9] can be developed with a similar

approach [162] where state is provided with each request. If a message-oriented
middleware (136) is used to keep the external state, it has to assure that messages

are not lost, as summarized by the message-oriented middleware (136) pattern and

described by Hohpe’s and Woolf’s [1] reliable messaging pattern in greater detail.

This externalization of state through the use of messaging is also covered by Varia

[154] as a best practice for applications using Amazon Web Services (AWS) [138].

Fowler [15] also discusses different approaches to handle state in applications.

Client Session State refers to the above mentioned state attached to each request,

thus, the state is managed by the client accessing the application. Database Session
State refers to storing state information in a database. In this scope, the stateless
component pattern would introduce the additional restriction that this database

should be provided by a storage offering, such as relational database (115), key-
value storage (119), or blob storage (112).

174 4 Cloud Application Architecture Patterns

4.3.3 User Interface Component

Interactive synchronous access to applications is provided to humans, while

application-internal interaction is realized asynchronously when possible to

ensure loose coupling. Furthermore, the user interface should be customiz-

able to be used by different customers.

How can user interface components be accessed interactively by
humans while being configurable and decoupled from the
remaining application?

Context

Distributed applications (160) componentize their functionality and deploy the

resulting application components to elastic infrastructures (87) or elastic platforms
(91). The individual application components are scaled out and instantiated multiple

times. Therefore, user interface component instances have to be added and removed

easily from the application without affecting the user experience. The dependencies

on other application components should be reduced as much as possible. Further-

more, user interface components may be used by many different customers if the

cloud application itself is offered as a service. Therefore, the user interface should be

configurable to the individual requirements of these customers.

Solution

The user interface component serves as a bridge between the synchronous access of

the human user and the asynchronous communication used with other application

components. User interface components are implemented as stateless components
(171). All data handling and processing functionality is, therefore, externalized to

simplify adding and removing component instances for scalability or due to instance

failure. State information is attached to requests, may be held in a part of the user

interface that is deployed on the user’s access device, or may be obtained from

external storage. In a similar fashion, a configuration may be managed for the user
interface component to adjust display languages, color schemes etc.

4.3 Cloud Application Components 175

Result

The functionality provided by the user interface component should be as minimal as

possible and should only subsume user input validation and enrichment of the

provided data from other sources necessary to initialize processing in other

components of the application. Such separation of duty also simplifies addition or

removal of the user interface component instances. Requests to user interface
components that are instantiated multiple times are distributed on a per-request-

basis, thus, each user request to the application is load-balanced individually. As

depicted in Fig. 4.8, user interface components should be accessed through an

elastic load balancer (254). This component distributes requests among the indi-

vidual user interface component instances based on the observed requests. Alterna-
tively, the load balancer may only handle the assignment or requests while the user

interface component itself handles elasticity by implementing the elasticity man-
ager (250) pattern. For either approach used for load balancing, users are not

associated with a specific component instances. This allows component instances

to be added and removed more easily and user experience is not affected by the

failure of an individual instance of a user interface component. Handling of

elasticity may be further simplified by asynchronous interaction of the user inter-

face with other application components to increase loose coupling (156) between

them. In Fig. 4.8, this asynchronous access is enabled by a message queue offered

by a message-oriented middleware (136) that the user interface component uses to
communicate with other application components.

State information required by user interfaces is provided by the user accessing

the application with each request as depicted in Fig. 4.8. User interface components

may rely on an external state as described by the stateless component (171) pattern.
But in this case, a possible eventual consistency (126) of the used storage offering

has to be considered carefully. Depending on the consistency guaranteed by the

storage offering, a user may, for example, not directly see the data manipulations he

or she has performed. If more state information is needed in the user interface than

what can be transported with each request or obtained from storage offerings, part

Request

ID

Number of
Requests

scale

Load
Balancer

Elas�c
Load Balancer

User Interface
Components

Message
Queue

Fig. 4.8 User interface components in a common setup

176 4 Cloud Application Architecture Patterns

of the user interface may be deployed on the device through which a user accesses

the application. Such deployments also increase the level of interactivity as the

local parts of the user interface may be accessed similar to native applications, for

example, using the Google Web Toolkit (see known uses).

Configurability of the user interface is supported by a configuration file man-

aged in a similar fashion as state information. In this file, user requirements, such as

UI colors or interface languages, and device type are specified. A user interface
componentmay also be adjusted transparently to the user, for example, to reflect the

security privileges and access rights granted to the user. Information about the

device used to access a user interface should be associated with every request, so

that the interface can be adjusted for screen size etc. respectively. Other configura-

tion information, for example, the user-specific layout of user interface elements

should be stored on the server side, as a user may use different devices to access the

user interface component.

In scope of user interface configurability, portal technologies [9, 163] may be used

to enable users to compose their individual interfaces from content provided by

separate user interface components. The concept of portals is not cloud-specific or

has been introduced by cloud computing. Instead, it is a long established technology

to enable user of Web applications to compose user interface functionality into

custom Web sites. Figure 4.9 depicts an exemplary use of portal technology in user

interface components hosted by different clouds. The portal itself is provided by one

user interface component that retrieves content from other user interface components

and combines it in a unified user interface. The retrieved content, referred to as

portlets, is commonly not fully configured, i.e., colors, text formats etc., are not

specified. This configuration is kept in the portal configuration specific to every user.

Each user of the portal may, therefore, define individual compositions of portlets

provided by other user interface components hosted in different clouds.

Cloud 4

User Interface
Component

Cloud 3

User Interface
Component

Cloud 2

User Interface
Component

Portal

Weather
Portlet

Stock Market
Portlet

News
Portlet

E-Mail
Portlet

Cloud 1

User Interface
Component

Fig. 4.9 Integration of different portlets into a portal

4.3 Cloud Application Components 177

Variations

Under some conditions, users have to be associated with specific user interface

instances, for example, if a secure communication session has been established. In

this case, user requests may be routed to this specific user interface component

instance for the duration of the communication session.

Related Patterns
• Managed configuration (247): if the user interface component is scaled out, the

configuration should be stored in a central storage offering as described by the

managed configuration pattern.

• Relational database (115), key-value storage (119): these storage offerings may

be used to keep state information that cannot be transmitted with each request. If

used, the consistency guaranteed by these offerings has to be evaluated carefully,

as it is likely to be directly reflected in the user interface experience provided to

human users. A data abstractor (194) can be used to hide data inconsistencies

from users in case of eventual consistency (126).
• Processing component (180): longer running tasks that are initiated by the human

user are handled in separate processing components. As interaction with these

components should be asynchronous, a user interface component may have to

provide information to the human user about the processing state prior to its

completion. This separation of user interfaces from the rest of the application is

also a successful best practice in stand-alone applications, where it is called three-

tier architecture [127]. We describe this in more detail as well in the two-tier cloud
application (290) and three-tier cloud application (294) patterns.

Known Uses

Some cloud provider offer special libraries to create user interface components

suitable for their own and other runtime environments. Google, for example,

provides the Google Web Toolkit [164] for this purpose. The above mentioned

deployment of part of the user interface on the client side to enable a more

interactive user-experience can be realized using Asynchronous Java Script and

XML (AJAX) [165], a technology on which the Google Web Toolkit also relies. In

essence, AJAX decouples human interaction from requests to a server, thus, a user

may be given feedback directly from the application he or she is using while longer

running requests to a server are executed transparently and asynchronously in the

background. Yahoo and other portal providers provide users with means to inte-

grate versatile information into a customized portal [166, 167] effectively enabling

the above mentioned portal configuration.

178 4 Cloud Application Architecture Patterns

Further Reading: Tatnall et al. [163] give an overview of

portal technologies. Architectural styles to build AJAX

applications have also been captured in a pattern format

by Mahemoff [168] and Gross [169]. General patterns on

user interface design are available in the Yahoo Design

Pattern Library [16]. Fowler [15] covers Web Presentation
patterns for Web-based user interfaces and Session State
patterns describing how these may store managed state

information.

4.3 Cloud Application Components 179

4.3.4 Processing Component

Possibly long running processing functionality is handled by separate

components to enable elastic scaling. Processing functionality is further

made configurable to support different customer requirements.

How can processing be scaled out elastically among distributed
resources while being configurable regarding the supported
functions to meet different customers’ requirements?

Context

A distributed application (160) divides application functionality among different

cloud resources. These application components shall be instantiated multiple times

to scale out elastically among multiple cloud resources. The processing functional-

ity offered by an application, therefore, has to be handled by different application

component instances that operate independently. Furthermore, instances of these

components have to be added and removed easily to the application. To ease this

provisioning and decommissioning of component instances, the dependencies of

the processing components on each other as well as other application components

should be minimized. This loose coupling (156) of components would also limit

impacts of component instance failures on other running instances.

Solution

Processing functionality is split into separate function blocks and assigned to

independent processing components. Each processing component is scaled out

independently. To ease these tasks, processing components should be implemented

in a stateless fashion as described in the stateless component (171) pattern. There-
fore, they should obtain data required for processing with requests to them or from

storage offerings, for example, relational databases (115), key-value storage (119),
or blob storage (112). Such offerings may also be used to persist the results after the

completion of processing.

Result

The interaction of multiple processing components with each other and with other

components of the application is realized in an asynchronous fashion. Through this

asynchronous communication, they can be loosely coupled (156) from the

180 4 Cloud Application Architecture Patterns

interacting application components. As depicted in Fig. 4.10, processing compo-

nent instances should share a common message queue offered by a message-
oriented middleware (136) for requests to enable load balancing. This concept

has been introduced by Hohpe and Woolf [1] as a competing consumer. In scope

of a cloud application, the processing components should be scaled-out by an

elasticity manager (250) or an elastic queue (257) as shown in Fig. 4.10. These

management components handle the provisioning and decommissioning of

processing components based on the number of requests. Regardless of the used

load balancing technique, the separated processing components may, thus, be

scaled individually enabling a more efficient use of cloud resources. A critical

design decision is, however, the level of granularity at which processing function-

ality is divided into individual components. Too small components may not utilize

underlying resources, for example virtual servers offered by an elastic infrastruc-
ture (87), efficiently and lead to a significant amount of communication overhead.

Too large components may run inefficiently on single cloud resources that are

limited in capabilities. If an elastic platform (91) is used for deployment of the

distributed application (160), the distribution of application components among

cloud resources, such as virtual servers is handled internally by the cloud provider.

Therefore, the developer is alleviated from this design decision, but a too fine

granular of processing components may still result in a performance drawback due

to a high level of communication overhead. The distributed application (160)

pattern describes this decomposition of application functionality in greater detail

and covers how application components may be distributed among cloud resources.

In scope of processing components, thus, the level of parallelization has to be

weighted regarding an efficient use of cloud resources and the required communi-

cation overhead.

Once separated, the processing components should be implemented as stateless
components (171) to avoid data loss in case of failures. Therefore, processing

config

Request

Number of
queued Messages

scale

Elas�c
Queue

Processing
Components

User Interface
Component

Storage
Offerings

Fig. 4.10 Processing component in a standard setup

4.3 Cloud Application Components 181

components should be provided with data in requests or should obtain the data

required for processing from storage offerings. In this scope, data should only be

persisted after a component has finished processing a request. Storing intermediate

processing results could leave the application in an inconsistent state in case a

processing component fails.

Configurability of processing components is enabled by passing configurations

information with every request or storing a customer-specific configuration that

shall influence all requests. To ensure a flexible configurability, processing

components should be decomposed into smaller components providing a specific

processing function. These components can then be composed in a loosely-coupled

fashion. As dependencies among components are, therefore, avoided, customer-

specific configurations can be used to adjust the processing performed by such

composed processing components easily, for example, by re-routing requests. The

distributed application (160) pattern describes several approaches that may be used

to decompose applications functionality into separate components. Processing

components are especially suited for the decomposition based on pipes-and-filters
[1] or processes [76].

For example, consider a video processing application, depicted in Fig. 4.11.

Separate processing components are created for video format conversion, reduction

of audio signal noise, and informing a customer when a video has been converted.

These components or “filters” are then connected using “pipes”, i.e., message

queues provided by a message-oriented middleware (136), to provide a processing

path traversed by each request, i.e., a video. As messages are too small to contain

video files, these are stored in a central blob storage (112). Configuration about the
processing of a specific video file is now passed to the application in the input

message to adjust the setting for the format converter components and noise

reduction components. After the video has been processed as specified, the user

can decide how to be informed about the outcome. This configuration is specified

Fig. 4.11 Exemplary pipes-and-filters video processing application

182 4 Cloud Application Architecture Patterns

once and then stored centrally as a managed configuration (247). Based on this

configuration, the last video processing component specifies the desired communi-

cation channel in the notification message it sends out. This message is put into

a message queue that is accessed by the e-mail processing component and text

message processing component. Each of these components only retrieves the

messages to be processed by them and notifies the user accordingly.

A process-based decomposition of the same example application is depicted in

Fig. 4.12. We used the Business Process Model and Notation (BPMN) language

[159] for the graphical modeling of this process and its interaction with the

individual processing components. The order of video format conversion, signal

noise reduction, and customer notification is described by a process model. For

every video to be converted, this processes model is instantiated and executed on a

process engine [76]. The state of the process instance is, therefore, kept by the

process model instance and does not traverse the separate processing components,

which differentiates the approach from a pipes-and-filters architecture. Upon

instantiation, the process is provided with configuration parameters that are passed

as input parameters to processing components to specify which video should be

Fig. 4.12 Exemplary process-based video processing application

4.3 Cloud Application Components 183

converted and what setting should be chosen for conversion and noise reduction.

Processing component interfaces and enactment protocols are often specified in the

form of WSDL files [9, 160] in this scope. As the process instance cannot directly

access remote files, a separate activity is used to retrieve the customer configuration

about the desired notification style form the blob storage (112). After this retrieval,
the content of the file is mapped to process instance variables that can be used in the

conditional branch containing the notification activities.

Related Patterns
• User interface component (175): this component receives requests from human

application users and forwards them asynchronously to the processing

components.

• Blob storage (112): the size of data that can be transmitted via message queues

through which processing components are accessed is often limited. In case a

processing component has to work on larger data, a pointer to a data element

stored in a blob storage may be included in the request message.

• Data access component (188): if a processing component has to access storage

offerings, the complexity of this access, such as the concrete interface, access

protocols etc. should be encapsulated into a data access component.
• Message-oriented middleware (136): the message queue may be provided by a

message-oriented middleware that can further increase the loose coupling (156)

between the processing components and other application components by

handling message format transformations.

• Managed configuration (247): as described above, configuration parameters of

processing components may be managed centrally.

Known Uses

Varia covers the decomposition of processing functionality into separate processing

components as one a fundamental architectural style for cloud applications [93,

154] built on Amazon Web Services [138]. Processing components should, espe-

cially, be loosely coupled through the use of Amazon’s message-oriented
middleware (136), called Simple Queue Service (SQS) [38]. Furthermore, each

component should handle its own elasticity and should keep any state information

externally. Chapell suggests a similar approach as a good Windows Azure Pro-

gramming Model [170]. Processing components in Windows Azure are called

worker roles as opposed to web roles providing user interfaces. It is suggested to

communicate between multiple instances of these worker roles using messaging, as

described by the processing component pattern.

184 4 Cloud Application Architecture Patterns

4.3.5 Batch Processing Component

Requests are delayed until environmental conditions make their processing

feasible.

How can asynchronous processing requests be delayed to be handled
when conditions for their processing are optimal?

Context

Distributed applications (160) divide processing functionality among different

processing components (180) to scale out processing among multiple cloud

resources. If such processing components are accessed asynchronously, some or

all of the three following conditions may make it unfeasible to process the requests

sent to such components immediately: seldom accesses to processing functionality,
powerful processing component instances accessed continuously, environmental
conditions, such as resource costs. In case of seldom accesses, it may be more

efficient to provision the handling processing component on-demand and only

when a certain number of requests are present to utilize it. Similar, if the capabilities

of a processing component instance are significantly higher than what can be

utilized by requests continuously sent to it, a processing component instance should

only be provisioned, when there are enough requests to make processing feasible.

These first two conditions are more likely to arise in an elastic infrastructure (87)
where the application controls when virtual servers are provisioned and

decommissioned. However, the approach may be applicable to an application

deployed on an elastic platform (91) as well. The third condition considers the

environment as cloud resources used by the processing component may be provided

under varying conditions (availability only during certain time frames, varying

price etc.). In this case, requests should be processed when environmental

conditions are matching, for example, the desired price or availability of required

IT resources.

Solution

The batch processing component accepts asynchronous processing requests at all

times, but stores them until conditions are optimal for their processing (Fig. 4.13).

Usually, a message queue provided by a message-oriented middleware (136) is

4.3 Cloud Application Components 185

used to store requests, but storage may also be handled a separate stateful compo-
nent (168) or storage offerings (see Sect. 3.5 on Page 109). Based on the number of

stored requests, environmental conditions, and custom rules, processing compo-

nents are instantiated to handle the requests. Furthermore, request handling has to

respect the service level required from the batch processing component, thus,

provisioning processing components under non-optimal conditions if requests

cannot be delayed any longer.

Result

Processing requests are accepted and their execution is coordinated by the batch
processing component. It stores these requests using a storage offering, a message

queue, or stateful component. Requests sent to the batch processing component
either contain information regarding the desired service level or the service level is

a fixed configuration. The batch processing component continuously monitors the

delayed and stored requests and environmental conditions, such as cloud resource

availability and pricing. If these conditions make processing feasible or the assured

service level requires it, processing components are instantiated. This approach

may also be used to better utilize cloud resources accessed on a pay-per-use basis.

Such resources are often billed by a certain time-slot (hourly, daily etc.). A batch

processing component may be used to collect processing requests until a complete

time-slot may be utilized. Configurability of the batch processing component is
handled in a similar fashion as for processing components (180).

Variations

The component monitoring the delayed requests and the environment may also

contain the processing functionality to handle requests immediately. In this scope, it

would only initiate the provisioning of additional processing components if its own

capabilities are insufficient.

Fig. 4.13 Batch processing component in a standard setup

186 4 Cloud Application Architecture Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_3

Related Patterns

The batch processing component functions similar to an elastic queue (257) and

such a queue can be used to implement the functionality of a batch processing

component. However, if load balancing functionality is offered by the provider, the

application may have to provide an additional batch processing component. Based

on the functionality that may already be implemented by other application

components, a batch processing component, therefore, uses the following other

patterns:

• Message-oriented middleware (136): this communication offering provides

message queues for storage of messages until they are retrieved for further

processing. It is, therefore, ideal to delay request messages in scope of the

batch processing component.
• Elastic queue (257): an elastic queue provisions and decommissions the

components handling requests depending on the number of messages stored in

a queue. An elastic queue may, therefore, be configured to provide the behavior

desired from the batch processing component.
• Elastic infrastructure (87): the batch processing component has to provision and

decommission processing components (180) that may be hosted on virtual

servers provided by an elastic infrastructure. Through the management interface

of the elastic infrastructure, a batch processing component may handle the

required scaling tasks automatically.

• Elastic platform (91): in contrast to an elastic infrastructure, application

components deployed to an elastic platform are often not associated with a

virtual server. In this environment, the batch processing component, therefore,
decides when to provision and decommission the processing components (180)
directly. Especially, the load balancing of the processing components once

instantiated, may be handled completely by the elastic platform. The only

decision that has to be made by the batch processing component is then, when

processing should be started and stopped.

Known Uses

Amazon provides virtual servers, Spot Instances [171], part of its Elastic Compute

Cloud (EC2) [18] that have a variable pricing based on the current workload

experienced by Amazon. Amazon already allows users of such instances to specify

rules for which price range virtual servers may be started or stopped. A batch
processing component may delay requests until processing is cheaper, but can also

supervise other influencing factors, such as the desired response time.

4.3 Cloud Application Components 187

4.3.6 Data Access Component

Functionality to store and access data elements is provided by special

components that isolate complexity of data access, enable additional data

consistency, and ensure adjustability of handled data elements to meet differ-

ent customer requirements.

How can the complexity of data storage due to access protocols and
data consistency be hidden and isolated while ensuring data
structure configurability?

Context

A distributed application (160) may use different storage offerings (see Sect. 3.5 on

Page 109), for example, relational databases (115) and key-value storages (119) to
store data. Alternatively, these applications may also use stateful components (168)
developed individually. Handling the complexity of accessing this data, i.e.,

handling of authorization, querying for data, failure handling etc. in user interface
components (175) or processing components (180) tightly couples those

components to the used storage offering and complicate the implementation of

these components as a lot of the idiosyncrasies of data handling have to be respected

by them. Therefore, a later change to the application, for example, the replacement

of a storage offering with another one causes significant changes to other applica-

tion components. Instead, different data sources should be integrated to provide a

unified data access to other application components. Also, data may be stored at

different cloud providers that have to be integrated as well.

Solution

Access to different data sources is integrated by a data access component
(Fig. 4.14). This component coordinates data manipulation if different storage

offerings are used. In case a storage offering shall be replaced or the interface of

a storage offering of a cloud provider changes its interface, the data access
component is the only component that has to be adjusted, thus, ensuring a loose
coupling (156) between the rest of the application and used cloud offerings.

188 4 Cloud Application Architecture Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_3

Further Reading: Fowler [15] motivates a similar

separation of data handling and application logic as is

ensured by the use of data access components. He also

covers different styles to structure data, i.e., in tables or

rows and discusses how data access can be integrated with

other application components.

Gamma et al. [2] apply a similar approach to object oriented

applications called adapter. Buschmann et al. [14] cover a

proxy pattern to enable remote access to functions an data

that may be used to control and restrict these accesses.

Result

The complexity of accessing different storage offerings due to different interfaces,

interaction protocols, authentication methods etc. is subsumed by a data accesses

component that is used by other application components. This ensures that the

cloud providers among which data storage is distributed may be hidden from other

application components to ensure a unified data access behavior to them. If a cloud

provider that stores data shall be exchanged with a different one, the application

components to be adjusted may be easily identified. Furthermore, these data access

components can enable client-centric consistencies in addition to the consistency

assured by the provider and can be designed to assure configurability of the handled

data elements. Both concepts are described in the following:

Client-centric consistencies: the data access component may be used to provide

a different consistency behavior to other components than what is provided by the

integrated cloud storage offerings. If the data access component can access stored

data in a transactional context, it can ensure strict consistency of integrated data as

described in the strict consistency (123) pattern. In case of eventually consistent
(126) storage offerings, the data access component can use the following

Fig. 4.14 Data access

components integrating

stateful components and

storage offerings residing in

two clouds

4.3 Cloud Application Components 189

approaches to enable client-side consistencies regardless of the eventually consis-

tent behavior initially supported by a storage offering, as adapted from Tanenbaum

et al. [127] and Vogels [131]. For these naı̈ve implementations to assure client-side

consistency models, the data handling uses versions on data elements, and histories
of operations executed by clients. We first cover briefly how different client-side

consistency assurances can be realized by a data access component. These consis-
tency assurances are also covered in detail by the eventual consistency (126)

pattern. Afterwards, we cover how the consistent knowledge in both approaches

regarding versions numbers and operations identifiers can be ensured if the data
access component itself is scaled out.

• Monotonic Reads – One client will never read data that is older than what it has
read before.

• Read Your Writes – One client will immediately see data alterations performed
by it.
These two consistency levels can be realized by data access components using

version identifiers associated with each data element. Upon every write of a data

element, this version identifier is increased. The data access component may then

know the last version accessed by a client and can drop any results of read and write

operations that are too old. If the data access component is scaled out, all instances

of it need to have consistent information about the version last seen by a client

(consistency for that client) or all clients (consistency for all clients).
• Monotonic Writes –Write operations of one client are executed in the order they

were issued.
This client-side consistency can be ensured by storing the unique identifiers of

client’s operations in an operation history. If a data access component retrieves an
operation that it shall execute but the data to update does not reflect all previously

executed operations in the history, it can wait. Again, this requires that all instances

of a scaled-out data access component have a consistent knowledge about the

operation history of a client (consistency for that client) or all clients (consistency
for all clients).

Scaling of the data access component is significantly hindered if it enables a

client-side consistency assurance that is not assured by the storage offerings,

because the version identifiers and operation identifiers have be consistent among

data access component instances. This can be realized in two ways. First, the data
access components are stateful components (168), thus, they maintain the identifiers

internally. If an identifier shall be increased, the data access component instances

do so in an ACID transaction, as described in the strict consistency (123) pattern.

The second approach is to implement the data access component as a stateless
component (171) and store the version identifiers and operation identifiers in a strict
consistent (123) storage offering that is accessed by all data access component

instances. In either case a hybrid access to data elements can now be realized:

clients can decide on every read if they would like to retrieve consistent data (the

version identifier and operation identifier is accessed) or if eventual-consistent data

is sufficient (only the eventual consistent storage offering is accessed).

190 4 Cloud Application Architecture Patterns

This hybrid approach is also used by to some storage offerings and also reflected

in pay-per-use pricing models: customers pay less if they decide for eventual

consistent reads as consistent reads are harder to realize. Therefore, introducing

any consistency to an eventually consistent storage or a set of storage offerings that

are integrated always has to be weighted with performance and partitioning toler-

ance, because according to the CAP theorem [67] not all of these can be optimized

at the same time. Especially, the initial consistency behavior of a storage offering

can significantly impact performance if changed. Consider, for example, a storage

offering, that assures no client-side consistency, for which read-your-write consis-

tency shall be enabled. Therefore, a versioning identifier is associated with every

data element and all operations retrieving an obsolete data version are dropped and

re-executed by the data access component. However, that means that a write

operation executed after a read operation may take very long to return, as the

data access component waits until it retrieves the last or a newer version, thus,

significantly affecting the performance experienced by the client. Also, when the

data access component computes the new version identifier it has to coordinate with

all other instances in case it is scaled-out. Reintroducing the problems of strict
consistency (123) to the eventually consistent storage offering it accesses.

Configurability: to adjust the data structure supported by data access
components two characteristics have to be ensured. First, the data elements and

their structure have to be extensible to support additional data elements and to

extend existing data elements with additional data fields. Second, configured or new

data elements have to be queried using generic functionality. Therefore, the inter-

face of the data access component and the structure of handled data elements have

to support configurability as depicted in Fig. 4.15.

The extensibility of data elements is realized by a certain data structure, where

each data element is associated with a list of arbitrary data elements. This list may

either be filled directly with data values or may be used as a pointer to other data

elements that shall be associated with the extended data element. For example, if an

application handles children of a school and the result of a test not commonly made

by schools shall be stored with data elements representing children, one of the data

fields may be used for it. If the test shall instead be modeled as a different data

id

id id

key key

Fig. 4.15 Data access component interface and data structure

4.3 Cloud Application Components 191

element containing more information, for example, when a child took it, the test

result can also be modeled as a separate data element referenced in a field.

The second characteristic of configurable data access components is generic

portion of their interfaces. To increase comprehensibility, interfaces usually pro-

vide specialized application specific functions as depicted in the left part of

Fig. 4.15. These functions, for example, can be used to specifically query children

data elements in the above example. The semantic of these functions is well-defined

in scope of the application they are used in an, thus, significantly ease interaction

with the interface. However, if the data elements provided by the data access
component are extended, new data fields and new data elements cannot be respected

in specialized functions defined for an application. Therefore, a data access com-
ponent should also provide generic functions to access arbitrary data elements

handled by it. These generic functions should at least be usable to create, read,
update, and delete data elements, thus, they are called CRUD functions [172].

Using these functions, data elements may be accessed using a unique identifier,

which is passed to the operations as parameter. Arbitrary data elements provided by

the data access component can, therefore, be queried and manipulated using the

generic functions, if no specialized functions exist for this purpose. A drawback of

such extensible data elements and generic access functions is that readability of the

data access component interface is drastically reduced, as a lot of the provided

functionality is hidden behind the same interface. Furthermore, if multiple

components access the same data access component, each of these components

needs to implement specialized functionality, i.e., to query children using the

generic functionality, rather than using an interface function specifically created

for it. This may lead to a lot of redundancy in the application implementation.

Therefore, interface readability always needs to be weighed against the flexibility

of generic data manipulation interfaces.

Related Patterns
• Restricted data access component (222): if the components accessing data do not

have the same level of privacy, security, and trust as the rest of the application,

the data access component can be extended to restrict access to data, obfuscate

data, or delete confidential data elements transparently to the other components

accessing it.

• User interface component (175), processing component (180), and batch
processing component (185): if the data access component is implemented as a

separate component, the required serialization and deserialization of data to

communicate with these other application components can degrade performance

of the application. The functionality described by the data access component

pattern is, therefore, often implemented together with another application com-

ponent patterns to form one larger application component of the distributed
application (160).

• Data abstractor (194): if the data access component provides data that is

eventually consistent (126) it can additionally implement the data abstractor

192 4 Cloud Application Architecture Patterns

pattern to hide the fact that data is eventually consistent from other application

components and application users if the application’s use case allows it.

• Storage offerings (see Sect. 3.5 on Page 109): the data access componentmay be

used to integrate different storage offerings and then provides a unified access to

them. All storage offerings covered in Chap. 3 are suitable for this integration.

The data access component may even provide application specific functionality

to access data, so rather than just providing operations to execute general

queries, it may offer operations to query users, customers, stock items etc.

adding more semantics to its interface than what generic interfaces of storage

offerings provide.

• Provider adapter (243): the unification and abstraction that a data handling

pattern provides for integrated storage offering should be used internally by

every application component accessing a provider interface. This best practice is

described generally in the provider adapter (243) pattern ensuring that applica-

tion component implementations are loosely coupled to cloud provider interface

specific.

Known Uses

The above mentioned CRUD functions are also used in the REST architectural style

[72]. It limits the functions of interfaces to these fundamental operations. Often, this

style of interaction is found in storage offerings, such as Amazon’s Simple Storage

Service (S3) [132]. How access methods exceeding these basic data manipulation

functions can be designed is discussed by Fowler in [173]. The covered

configurability of data elements has also been described by Chong et al. [174] to

adjust database tables to the need of different customers. They saw this as a major

enabling factor to share database instances between multiple customers in order to

reduce costs and, thus, address a larger customer market.

4.3 Cloud Application Components 193

http://dx.doi.org/10.1007/978-3-7091-1568-8_3
http://dx.doi.org/10.1007/978-3-7091-1568-8_3

4.3.7 Data Abstractor

The data provided to users or other application components is abstracted to

inherently support eventually consistent data storage through the use of

abstractions and approximations.

3,14159...

3,14 How can eventually consistent data be presented, so that possible
inconsistencies are hidden from other application components and
application users?

Context

Storage offerings (see Sect. 3.5 on Page 109), especially, key-value storage (119)

and blob storage (112) may display eventually consistent (126) behavior to increase
availability and partitioning tolerance. According to the CAP (consistency, avail-

ability, and partitioning tolerance) theorem [67], these desirable properties of a

storage offering compete with each other (see Page 83 in Sect. 3.2 for a detailed

discussion). As strict consistency (123) demands that more data replicas among

which data is distributed for availability are accessed during read and write

operations, the tolerance of the storage offerings towards network partitions is

decreased, also decreasing its availability. Instead, eventually consistent (126)

storage offerings allow that data manipulation operations access fewer data replicas

to increase the performance of these operations and to make the offering more

robust. Changes to stored data are then propagated between replicas asynchro-

nously after the data alternating operations have already completed. However, if the

distributed application (160) using these eventually consistent storage offerings is

designed for consistent data, data consistency has to be reassured by higher-level

components in the application stack. The data access component (188) pattern

covers some approaches for this purpose. Reassuring data consistency on the

application level can, however, void the benefits introduced by eventually consis-

tent storage offerings regarding performance and availability.

Solution

The style of data representation is adjusted to allow data retrieved from storage

offerings to be eventually consistent (126). Therefore, the data representation

always reflects that the consistent state is unknown by approximating values or

194 4 Cloud Application Architecture Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_3
http://dx.doi.org/10.1007/978-3-7091-1568-8_3

abstracting them into more general ones, such as progress bars, traffic lights, or
change tendencies (increase/decrease) as depicted in Fig. 4.16. If the application

scenario for such abstractions and approximations, thus, if the user of the

applications does not require consistent data values, a data abstractor should be

implemented to increase the beneficial effects of eventually consistent storage

offerings.

Result

A data abstractor reads eventually consistent data and provides it in an abstracted,

approximated, or summarized form to users and other application components.

Additional consistency checks during read and write operations are not required as

the abstraction reduces the impact of inconsistent data. This incorporation of

eventual consistency (126), especially, simplifies scaling out of the user interface
component (175) as the component instances do not have to coordinate consistency

verification information, such as a versioning number kept with data elements.

However, the adjustment of the user interface affects the look-and-feel of the

application and, therefore, has to be acceptable in the concrete application scenario.

Figure 4.16 depicts three examples for application scenarios that may be suitable

for data abstractors. On the left, a large number of sensors store temperature

readings in an eventually consistent storage offering. The application approximates

theses values to determine the average and uses prior values to display a tendency

(temperature increase or temperature decrease).

In the middle of Fig. 4.16, a progress bar approximation is depicted. Consider,

for example, a logistics center where workers pick items from a large storage and

prepare them for packaging. If a worker has picked up an item, this status is stored

time

temperature

abstraction

temperature:

abstraction

item

1
2
3
4

packed?

yes

yes
no
no

order status:

abstraction

parking lot

city center
park & ride 1
park & ride 2
far far away

free slots

16

300
102
86

parking:

Fig. 4.16 Exemplary data abstractions

4.3 Cloud Application Components 195

in the eventually consistent storage. The application approximates the number of

prepared items, the active workers, and the overall number of concurrent packing

processes into an approximated progress bar for each order.

On the right of Fig. 4.16 a traffic light abstraction is used. A Web application

shall display the available free space of multiple parking lots. For this purpose, the

entry gates report cars entering or leaving the properties. Due to the eventual
consistency of the storage offering, the exact number of parked cars cannot be

determined. Using the overall amount of parking lots, the eventually consistent
number of parked cars, and the current tendency (drivers are generally leaving or

drivers are generally entering the parking lot), the data is approximated to a traffic

light to indicate how soon the parking lot is likely to be filled completely.

All of these application scenarios not only ensure the use of eventually consistent
storage offerings in the applications user interface, but also provide information to

users in a more useful fashion. Instead of providing consistent numbers, leaving

their interpretation up to the user, approximations and tendencies are provided that

can be interpreted by humans much more easily. For example, if a user was only

provided with the absolute number of free parking slots in the last example, he or

she would have to guess about the maximum available parking slots and the current

behavior of other drivers to determine how soon the parking lot will be utilized

fully.

Related Patterns
• Stateless component (171): the data abstractor pattern avoids consistency vali-

dation in application components, therefore, limiting the state that has to be

stored by these components. Ideally, they should not keep any internal state as

described by the stateless component pattern.
• Loose coupling (156): the interactions of the data abstractor with other applica-

tion components should be realized in a loosely-coupled fashion, as described by

the loose coupling (156) pattern.

Known Uses

This pattern has originally been described by us in [27]. SFPark [175] is an

application provided by the city of San Francisco. It provides the above mentioned

abstraction of available parking space in parking lots distributed among the city. As

consistent state information is hard to retrieve from the large number of parking

lots, availability is indicated only as high, medium, or low. Similarly, many online

stores indicate the availability of products as “in stock”, “limited quantity”, and

“out of stock”, for example. In both cases, the representation of the data to users is

better suited semantically than providing the consistent numbers.

196 4 Cloud Application Architecture Patterns

4.3.8 Idempotent Processor

Application functions detect duplicate messages and inconsistent data or are

designed to be immune to these conditions.

1+ How can an application component cope with message duplicates or
data inconsistencies that could lead to duplicate function execution?

Context

The information on which a distributed application (160) operates can be inconsis-
tent due to properties of used storage offerings (see Sect. 3.5 on Page 109),

for example, key-value storage (119) and blob storage (112) assuring eventual
consistency (126). Similar inconsistencies may occur due to message-oriented
middleware (136) assuring at-least-once delivery (144) of messages. This behavior

of storage offerings and communication offerings can result in duplicate execution

of application functions as follows.

In case of storage offerings displaying eventual consistency, application

components can possibly read obsolete information that has already been processed

and, thus, may have already been changed. However, this change is currently

propagated internally of the storage offering. Therefore, some application

components, even those that performed the data change, may read obsolete data

and would, thus, decide to execute the same function again.

The same problem arises, if application components of the distributed applica-

tion exchange information asynchronously via a message-oriented middleware
assuring at-least-once delivery. Cloud applications may also use messaging to

communicate with separate application, non-cloud applications, and legacy

applications. If the message-oriented middleware does not guarantee exactly-once
delivery (141) behavior, the receiver of a message must be able to cope with

duplicate messages. Even if exactly-once delivery (141) is guaranteed, it may still

be beneficial to implement receivers that can handle duplicate messages. This is

especially the case if non-cloud applications or legacy applications have to be

integrated, which do not support the transactional message exchange that is often

necessary for exactly-once delivery. Furthermore, even in exactly-once delivery
(141) messaging implementation failure recovery may still lead to very rare mes-

sage duplicates.

4.3 Cloud Application Components 197

http://dx.doi.org/10.1007/978-3-7091-1568-8_3

Solution

The idempotent processor ensures that duplicate messages and inconsistent data do

not affect application functionality either through inconsistency detection
identifying message duplicates and data inconsistencies or through idempotent
semantics of application functions enabling them to be erroneously executed

multiple times with the same outcome.

Inconsistency detection is ensured by a message filter as introduced by Hohpe

and Woolf [1] removing received messages prior to processing them or by a data

version identifier used to identify inconsistent data retrieved from a storage offering

that has already been processed.

Idempotent semantic of application functions is ensured if a duplicate execution

of a function due to duplicate messages or obsolete data results in the same

outcome. Therefore, the state of the overall application is not affected if some

functions are accidentally executed multiple times.

Further Reading: the idempotent processing of messages

has originally been covered as a messaging pattern, called

idempotent receiver by Hohpe and Woolf [1]. Respectively,

the idempotent processor pattern extends this concept to the
interaction with eventually consistent (126) storage

offerings to avoid the duplicate execution of application

functionality.

Result

Figure 4.17 depicts the two approaches how an idempotent processor may be

implemented for messaging (left) and eventual-consistent data stores (right).

Idempotent message processing: the first approach as described by Hohpe and

Woolf [1] is to associate each message with a unique identifier. The message filter

analyses a unique identifier associated with each message. For each message

passing through it, the identifier is stored by the filter in a message ID store.

Upon receiving new message, its message identifier is compared to message

identifiers already in this store. If a match is found, the message is dropped and

not forwarded. A critical design issue is how long message identifiers shall be

stored by the message filter, since a large list of message identifier may decrease the

filter’s performance. Therefore, messages are often also associated with a

timestamp specifying how long they are valid to enable the removal of message

identifiers from filter lists.

The second approach considers the semantics of functions offered by the

receiver. It is ensured that these functions have the same effect even when they

are executed multiple times. An example of such a message is depicted at the top

198 4 Cloud Application Architecture Patterns

left of Fig. 4.17, instead of sending a message saying that the value of a variable

“X” shall be increased by a certain amount, the message specifies the concrete

amount to which the variable has to be set, in this case “10”. Therefore, a duplicate

handling of this message will still result in the same variable value. This can of

course result in concurrency problems if messages are received out of order. In such

cases message identifiers may also contain sequence numbers. For further informa-

tion on message sequencing and their reordering also refer to the patterns message
sequence and re-sequencer described by Hohpe and Woolf [1].

Idempotent data processing: the first approach is to associate each data ele-

ment with a version identifier to enable the idempotent processor to identify data

that was already read. To do so, the idempotent processor internally stores the

version identifiers it has already processed. Alternatively, this version identifier

may also be stored in a storage offering, however, only strict-consistent (123)
storage offerings may be used. Detailed information on how to use such version

identifiers and, especially, how to keep them consistent among multiple application

component instances, is given by the data access component (188) pattern.
The second approach is to implement idempotent application functionality.

Functionality is often idempotent, if data is transformed from one format to a

different format. Consider, for example, an application that accesses pictures in a

storage offering, performs a color adjustment on them, and stores them again. If an

obsolete picture is read that has already been processed, processing it again and

storing the results again will lead to the same overall outcome. If multiple idempo-

tent processors access storage in this fashion, some optimization can be ensured by

reading data elements randomly instead of ordered to avoid duplicate processing of

the same element, and to check prior to processing if the data element has already

been changed.

Related Patterns
• Exactly-once delivery (141): a message-oriented middleware (136) may use a

similar functionality as the message filter employed by the idempotent processor
to filter messages internally prior to delivering them to receivers. Therefore, if

Message
ID

set X to 10

message
filter

v.1

seen versions1+ 1+

Fig. 4.17 Idempotent component for messaging (left) and storage offerings (right)

4.3 Cloud Application Components 199

the message-oriented middleware assures this property, idempotent processors
are likely to become unnecessary.

• Timeout-based delivery (149): this pattern describes how a message-oriented
middleware (136) may assure that a communication partner successfully receives

a message. Due to the used interaction protocol, messages are often delivery at-
least-once (144), thus, the need for an idempotent processor may be created.

• Eventual consistency (126): storage offerings (see Sect. 3.5 on Page 109) assuring
this kind of consistency should be considered for access by an idempotent
processor.

• Data access component (188): if the idempotent processor uses version

identifiers, it ensures a higher level of consistency than the storage offering

provides. It, therefore, implements so-called client-side consistency. The differ-
ent kinds of client-side consistencies and how to assure them is covered in detail

by the data access component (188) pattern.

Known Uses

The idempotent processor for messaging has originally been introduced by Hohpe

and Woolf [1]. Amazon’s messaging system, the Amazon Simple Queue Service

(SQS) [38], guarantees at-least-once delivery (144), and, therefore, Amazon also

suggests the implementation of idempotent receivers [147]. The same is suggested

by Mizonov and Manheim for messages that are exchanged using the Windows

Azure Queues [176].

200 4 Cloud Application Architecture Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_3

4.3.9 Transaction-Based Processor

Components receive messages or read data and process the obtained infor-

mation under a transactional context to ensure that all received messages are

processes and all altered data is consistent after processing, respectively.

How can an application component ensure that all messages it
receives are processed successfully and altered data is persisted
successfully after processing?

Context

A message-oriented middleware (136) can use transaction-based delivery (146) of
messages to ensure that messages are only deleted from provided message queues if

they have been received successfully by a client. However, using this approach no

assurances can be made regarding the processing of that received message. Espe-

cially if application components of a distributed application (160) can fail during

the processing of messages, additional means shall be established to ensure that

messages are not only received properly, but that they are also ensured to be

processed by the application. The same challenge arises, if an application compo-

nent accesses data from a storage offering (see Sect. 3.5 on Page 109) and it shall be

ensured that retrieved data is processed and successfully persisted again after

processing.

Solution

Transaction-based delivery (146) subsumes reading the message from a queue and

deleting it from a queue in one transaction. Therefore, these operations either both

complete or both fail leaving the message on the queue to be received by a different

client. The transaction-based processor extends the transactional context to the

processing of the message in the receiver as depicted in the left of Fig. 4.18.

Therefore, it is additionally ensured that every message received and deleted

from the queue is also processed by the receiving component.

Analogous, a transaction-based processor interacting with a storage offering,
reads, processes and writes data in one transactional context. This ensures that data

is only altered if it was processed successfully and that data is not changed by other

clients interacting with the storage offering while it is being processed. Avoiding

changes from other clients may also motivate pure transactional read operations

4.3 Cloud Application Components 201

http://dx.doi.org/10.1007/978-3-7091-1568-8_3

that do not alter data in the storage offering to ensure that data remains unchanged

while the application component processes it.

Further Reading: the transactional interaction with a

message-oriented middleware (136) supporting transaction-
based delivery (146) has been covered by Hohpe and Woolf

[1] as the transactional client pattern. Transactional

processing and transactional processing using message

queues is also discussed in detail by Bernstein and

Newcomer [128]. Respectively, the transaction-based
processor pattern summarizes these concepts and the

transactional interaction with storage offerings. The use of

transactions to interact with storage offerings, such as

relational databases (115) is also long established and

described in detail by Silberschatz et al. [108] or Elmasri

et al. [109].

Result

Through the use of (distributed) transactions, the transaction-based processor
ensures atomicity, consistency, isolation and durability for the processing of a

received message or accessed data. These are the following ACID properties in

scope of these interactions:

• Atomicity: all operations to receive, process, and delete a message or to manipu-

late data are either completed as a whole or fail completely, thus, making no

changes to the message queue or the storage offering.

• Consistency: after the transaction, the messaging system or the storage offering

is in a valid state, thus, the message or accessed data has been successfully

processed.

• Isolation: a retrieved message or accessed data is always handled by only one

transaction within a transaction-based processor.

• Durability: after the transactional operations have been completed, changes are

permanent, thus, the message is processed, has been deleted, and will not

reappear on the messaging queue and altered data will remain in that state.

3

1 read

delete

ACID Transac�on process2
1 read

ACID Transac�on process2

3 store

Fig. 4.18 Operations of the transactional processing of a message (left) and data (right)

202 4 Cloud Application Architecture Patterns

Related Patterns
• Transaction-based delivery (146): this pattern describes the transactional deliv-

ery behavior that must be supported by the used message-oriented middleware
(136) to enable the extension of the transactional context to the processing of

received messages by receiving application components.

• Relational database (115): this storage offering often supports the transactional

interaction required by the transaction-based processor.
• Watchdog (260): if transactional processing of messages is used to avoid mes-

sage loss in case of application component failure, a watchdog may be used

additionally to detect and replace failing application components.

• Timeout-based message processor (204): transactional interaction with a mes-
sage-oriented middleware (136) often makes the middleware harder to scale out.

This is due to the fact that the state of message queues, i.e., the messages

currently stored as well as the operations performed on these messages have to

be coordinated between the IT resources among which the message-oriented
middleware itself is scaled out. The challenges are similar to keeping a consis-

tent state among instances of a stateful component (168). Therefore, many cloud

providers, instead, use timeout-based delivery (149) to ensure successful deliv-

ery of messages by retransmitting messages. In this case, the component

processing messages can implement the timeout-based message processor
(204) to ensure that messages are processed successfully.

Known Uses

The transaction-based processor pattern describes how transaction-based delivery
(146) assured by a message-oriented middleware (136) can be extended to include

message processing performed by application components. Protocols of this inter-

action are, for example, specified by the Java Message Service (JMS) [145, 146].

Especially, if the message-processors are subject to fail transaction-based processor

can help to ensure that messages are not lost. Perry et al. [177] cover transaction-

based message processing for IBM Websphere MQ [142] in a pattern format and

especially focus on this transactional message processing. Many relational data-
base (115) products, such as IBM DB2 [110], Oracle 11 g [111], or MySQL [112]

support the transaction-based interaction with these storage offerings.

4.3 Cloud Application Components 203

4.3.10 Timeout-Based Message Processor

Clients acknowledge message receptions and processing to ensure that all

messages are handled by an application. If a message is not acknowledged

after a certain timeout, it is processed by a different client.

How can an application process messages while guaranteeing that
all messages handled by the application are processed at-least-
once?

Context

A message-oriented middleware (136) uses timeout-based delivery (149) to ensure

that messages are received successfully by at least one client. It requires these clients

to acknowledge a successful message reception. Until this acknowledgement,

messages are still stored in the queue but are invisible to other clients retrieving

messages from the queue. If an acknowledgement is not received in a specific time

frame, often called the visibility window or visibility timeout, a message is again

made visible to be received by other clients. Certain conditions, for example,

unreliable application components processing messages, may demand to extend

the assurance that a message has been received. Therefore, it shall be assured by

the application that a message has also been properly processed after its reception.

Solution

Instead of sending an acknowledgement right after receiving a message, a timeout-
based message processor sends this acknowledgement after it has successfully

processed the message. Therefore, if the processing fails after a successful message

reception, the message is made visible to other clients as if it had never been

received successfully at all. The operations necessary for this extended assurance

are depicted in Fig. 4.19. First, the message is written to a message queue

supporting timeout-based delivery (149). Second, the message is read by the client,

i.e., an application component of a distributed application (160) and, third, marked

as invisible by the message queue. Forth, the message is being processed. Fifth, the

application component implementing the timeout-based message processor pattern
acknowledges the processing of the message to the message queue followed by the

final deletion of the message from the queue in step six. At any time after setting a

message invisible, a visibility timeout may be reached at which point the message is

set visible again.

204 4 Cloud Application Architecture Patterns

Result

Every message is only deleted from a queue when it was received and processed

successfully. In case one of these operations fails, the message is made visible again

to be received again. A critical design parameter in this scope is the length of the

visibility timeout after which messages become visible again. If this timeout is

shorter than the amount of time required for processing of messages, messages are

never deleted but processed over and over again. Therefore, the message-oriented
middleware (136) used in an application containing timeout-based message
processors has to be configured carefully.

Related Patterns
• Timeout-based delivery (149): this pattern describes the behavior of the mes-

sage-oriented middleware (136) to assure messages receptions. The behavior

described there is extended by the timeout-based message processor to ensure

successful message processing.

• Watchdog (260): if the application components processing messages are unreli-

able, a watchdog may be used to identify and replace failing ones.

• Transaction-based processor (201): if the message-oriented middleware (136)

supports transaction-based delivery (146), the application component processing

messages can implement the transaction-based processor (201) pattern instead of
the timeout-based message processor pattern to ensure message processing.

Known Uses

Timeout-based message processing in the cloud is common, as cloud providers

often assure environment-based availability (98) and at-least-once delivery (144) of
messages. Therefore, the application component instances processing messages are

subject to fail. The communication offerings of these providers, additionally often

only assure at-least-once delivery of handled messages. Therefore, messages tra-

versing a cloud application from component to component should be processed

according to the timeout-based message processing pattern. This best practice is

described for Amazon AWS [138] by Varia [93, 154] and for Windows Azure [52]

by Chapell [170].

Fig. 4.19 Operations of the

timeout-based processing of a

message

4.3 Cloud Application Components 205

4.3.11 Multi-Component Image

Virtual servers host multiple application components that may not be active at

all times to reduce provisioning and decommissioning operations.

How can a virtual server provide the functionality of multiple
application components to be used flexibly in applications?

Context

A distributed application (160) may deploy its application components among

virtual servers provided by an elastic infrastructure (87). The individual application
components may, however, not fully utilize the servers if only one component is

hosted per server. Therefore, mapping each application component to a single server

may lead to underutilization. Furthermore, the workload experienced by different

application components may differ during the runtime of the cloud application. This

is especially the case for periodic workload (29), unpredictable workload (36), and
continuously changing workload (40). If each component is scaled individually and

hosted on separate servers, changes in the workload ratios between components may

require provisioning activities even though workload experienced by the overall

application could be handled by the same number of virtual servers.

Solution

Multiple application components (possibly including middleware) are hosted on a

single virtual server to ensure that running virtual servers may be used for different

purposes without making provisioning or decommissioning operations necessary.

Figure 4.20 exemplarily shows two application components managed as one multi-
component image. Both application components may be provisioned based on this

image, but not all of the application component instances are actively processing

workload at all times.

Result

Since different types of application components share a virtual server, the running

virtual servers can be used more flexibly. Furthermore, less server images have to

206 4 Cloud Application Architecture Patterns

be maintained for the application in the image database of the elastic infrastructure
(87). Regarding the management of the cloud application, it can also be beneficial

to provision inactive application components on virtual servers, thus, a virtual

server hosts a multitude of application components, but only a subset of these

components is active. Through this design, provisioned servers become much more

flexible regarding the application functionality they are used for. A challenging

design decision in this scope is how to distribute application components among

images in an optimized fashion. A problem that may arise in this scope, are

licensing issues if application components require licensed software on the virtual

server. In this case, having a multitude of inactive application components provi-

sioned on servers can result in licensing costs without providing a benefit to the

application.

Related Patterns
• Elasticity manager (250), elastic load balancer (254), and elastic queue (257):

these management patterns describe the process how application component

instances are added and removed from a running application. If an elastic
infrastructure (87) is used, they are, therefore, concerned about starting and

stopping virtual servers. If these servers provide different functionality they can

be reassigned instead of being decommissioned, which simplifies and optimizes

elasticity management.

• Feature flag management process (271): if an application has to be scaled up, but
necessary resources cannot be provisioned quickly enough, the feature flag
management process (271) enables a fallback on less resource-demanding appli-

cation functionality. If combined with a multi-component image, servers used by
application components of lesser importance to the application’s overall func-

tionality may be repurposed quickly to support critical functionality instead.

• Resiliency management process (283): as cloud resources may fail, failures have

to be detected and addressed. If multi-component images are used by an

Fig. 4.20 Two application

components managed as one

multi-component image

4.3 Cloud Application Components 207

application, replacements of failing component may be executed more quickly,

as other running components may be used as substitutes while new application

component instances are provisioned.

• Standby pooling process (279): pay-per-use cloud resources are often billed for

specific time-slots, for example, on an hourly basis. This pattern describes how

they can be kept on standby to be used again as long as they have been paid for

instead of decommissioning them right away. In case of a combination with a

multi-component image, cloud resources that are kept on standby can be

reassigned a lot more flexibly.

Known Uses

Abbot and Fisher [178] describe how to determine the optimal configuration of a

(virtual) server, for example, regarding the amount of memory to host an applica-

tion through a set of tests. In [179], we evaluate optimal distribution of application

components among virtual servers in greater detail.

4.4 Multi-Tenancy

Resource sharing is one of the five essential cloud properties established on Page 3
in Sect. 1.1. When dealing with the architecture of cloud-native applications, the

discussion is important which components of that application are shared with other

applications or, more specifically, which resources of underlying cloud

environments can be shared with other instances of the same or other applications.

Additionally, it is important to consider for applications, cloud infrastructures,

cloud platforms as well as execution environments that are offered to multiple

customers, which components are shared among the different customers, also

referred to as “tenants”, and which are not. The patterns in this section are,

therefore, targeted at applications build on top of cloud offerings that shall them-

selves be offered as a service to multiple tenants, thus, these applications have to

support multi-tenancy.

During the design of *aaS applications, three degrees of multi-tenancy have to

be considered that we captured in patterns: shared component (210), tenant-isolated
component (214), and dedicated component (218). These patterns apply to infra-

structure resources, platform components, application components and business

processes alike. For the sake of simplicity we call all these artifacts “components”

when discussing the multi-tenancy patterns. The degree of isolation between

tenants enabled by the multi-tenancy patterns is the main differentiating factor.

Isolation, in this scope, has three aspects. First, performance experienced by one

tenant shall not be affected by the performance required by other tenants. Second,

the stored data volume needed by one tenant shall not affect the storage available to
other tenants. Third, tenants shall not be able to access application components and

data that belong to other tenants.

208 4 Cloud Application Architecture Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

In case of a shared component (210), all tenants access the same component

instance that is unaware of the fact that is used by different tenants. Tenants may

provide individual configurations to adjust the component behavior, but isolation

among individual tenants is not guaranteed.

Instances of a tenant-isolated component (214) are also shared by all tenants, but
it is guaranteed that tenants are isolated against other tenants regarding the above

mentioned isolation aspects.

If a dedicated component (218) is used, tenants do not share this component.

Each tenant is associated with one instance or a certain number of instances of the

component.

When analyzing the different cloud offerings on the infrastructure and platform

level, it becomes clear that with an elastic infrastructure (87) offered as IaaS (45)

the hardware is run in a shared component (210) fashion where the hypervisor (101)
ensures multi-tenancy and isolation among the virtual servers, virtual data stores

and virtual networks, thus, implementing the tenant-isolated component (214)

pattern. In an elastic platform (91) offered as PaaS (49), even the middleware is

deployed following the tenant-isolated component (214) pattern. When a SaaS (55)
application is built on top of a PaaS (49) offering that is built on top of an IaaS

offering, the notion of a multi-tenancy differs in the SaaS level – different

customers with different users using the application, the PaaS level – different

applications using the platform, and the IaaS (45) level – different platforms and

applications using the infrastructure.

In custom cloud applications that shall themselves be offered as SaaS (55),

application architects can then decide how they implement individual components

of their applications regarding multi-tenancy. For example, they can implement the

data layer as a tenant-isolated component (214) based on a PaaS cloud storage

offering and implement the user interface as dedicated component (218) for each
tenant, because the user interface is very specific for individual tenants. In this

design, the architect always has to consider the tradeoff between IT resource

homogenization, which is necessary to share resources between tenants, and

customizability that has to be taken into account when opting for one of the

multi-tenancy patterns.

4.4 Multi-Tenancy 209

4.4.1 Shared Component

A component is accessed by multiple tenants to leverage economies of scale.

How can an application component be shared between multiple
tenants enabling some individual configuration?

Context

A distributed application (160) is offered to multiple tenants. Motivation for this

may be to address a large number of customers to leverage economies of scale, but

tenants may also be different departments of one company that access an applica-

tion. These tenants share IT resources required by applications provided to them.

This sharing may be introduced by an elastic infrastructure (87) or elastic platform
(91) to which the instances of the application components are deployed. But the

deployment of application component instances can be optimized by sharing them

between tenants and not only the IT resources that are hosted on. Sharing of

components is especially feasible for application components that provide the

same functionality to all tenants. If tenants can share the same instance of such

application components, underlying resources can be utilized more efficiently as

deployment redundancy is avoided. The provisioning of application component

instances shall be optimized by limiting the portion of the application stack and the

number of application components deployed exclusively for one tenant.

Solution

The most important property of a shared component is that the provided function-

ality is equal for all tenants accessing the component. In particular, if the compo-

nent merely provides data and does not store data of tenants, all tenants can be

treated as a uniform user group to which a common user experience and service

level is guaranteed. The shared component can be used by all tenants, thus, each

shared component instance handles requests of all tenants as depicted in Fig. 4.21.

These components behave equally for every tenant, but display, process, and store

tenant-specific data. Therefore, the corresponding user interface components (175),
processing components (180), or data access components (188) are configured

equally for all tenants and may not even be aware of the fact that they handle

workload of different tenants. Only minor configurations of component behavior

210 4 Cloud Application Architecture Patterns

may be passed to the application component instance with each request, for

example, to specify different display resolutions supported by user interface

components.

Result

Instances of shared components can be scaled out regarding the overall workload of
all tenants using the application. As individual tenants may not fully utilize an

application component instance, subsuming the individual workloads of tenants

leads to a reduced number of necessary application component instances, because

tenants share the same component instances. Also, as shared component instances
can be scaled for all tenants, the number of provisioning and decommissioning

operations is reduced when the workload of different tenants changes. Due to these

two effects, the runtime cost per tenant is reduced, allowing the cloud provider to

address a larger customer market. As depicted in Fig. 4.21, the shared component is

configured equally for every tenant. The functionality provided by this shared

component, regardless whether it is located on the user interface, processing, or

data layer of the application handles workload of every tenant, as shown on the right

side of Fig. 4.21. It is important to note that this functionality provided by the

shared component is unaware of the actual tenant for which a request is being

executed. Therefore, the behavior of one tenant may possibly influence other

tenants, for example, if a tenant generates a very high workload and the application

does not scale up accordingly, the performance experienced by other tenants may

be impacted as well.

Related Patterns

Two factors can render sharing application components as described by this pattern

unsuitable for tenants. First, the influences between tenants that may occur when

sharing components have to be avoided. Second, other requirements of tenants, for

Fig. 4.21 Clients accessing

a shared component

4.4 Multi-Tenancy 211

example, legal obligations disallow the sharing of resources with other tenants. In

these situations, the following patterns should be used instead of a shared

component:

• Tenant-isolated component (214): this pattern describes how application

components can be implemented to be made tenant-aware. Therefore, the appli-

cation components implement additional functionality to separate tenants, thus,

assuring isolation of access, performance, and data storage.

• Dedicated component (218): this pattern describes how some application

components may be deployed exclusively for a tenant, while other application

components of the distributed application (160) may remain shared.

Furthermore, the following patterns may be relevant if the shared component
pattern is used:

• Managed configuration (247): the configuration of the shared component may be

managed centrally as described by the managed configuration pattern.

• Periodic workload (29), once-in-a-lifetime workload (33), unpredictable work-
load (36), and continuously changing workload (40): if the different tenants

using an application component experience these workloads, the application

may benefit from a shared component if the workload peaks experienced by

different tenants happen during different timeframes. Sharing of component

instances reduces the amount of necessary provisioning and decommissioning

operations in this case.

• Private clouds (66): the elasticity of this cloud deployment type may be limited

if the private cloud is used by a small number of tenants. Shared components
may help to level out the utilization of resources by sharing application compo-

nent instances between tenants.

• Hypervisor (101): if a hypervisor is used as a shared component to which different

tenants may deploy their individual machines, it should be considered if it supports

the shared component pattern or the tenant-isolated component (214) pattern. In
case it supports the shared component pattern it is unaware of the fact that it is

being used by different tenants and may not ensure tenant-isolation. Therefore, if

one tenant utilizes the physical hardware, networking bandwidth, storage space

etc. too much, the performance experienced by other tenants may be affected.

Known Uses

Within the scope of one company, thus, a private cloud (66), many common

services, for example those used for authentication or user rights management,

may implement the shared component pattern. Chong and Carraro [174] discuss the
dedicated hosting for software applications for tenants on two levels: “Level 1: Ad

Hoc/Custom” and “Level 2: Configurable”. Level 1 deploys an instance of a

standard application for a tenant. Level 2 allows tenants to configure their instance

to their needs. The shared component pattern breaks this down to the level of

application component and motivates that many application components can be

212 4 Cloud Application Architecture Patterns

provided as one instance on these levels – configurable or not – and can then be used

in different applications of tenants. An example for such a shared component is the

National Weather Service provided by the National Oceanic and Atmospheric

Administration (NOAA) [180]. It offers a Web service interface to be integrated

in applications, but it is unaware of the different tenants and their applications

accessing the provided functionality.

4.4 Multi-Tenancy 213

4.4.2 Tenant-Isolated Component

A component shared between tenants avoids influences between tenants

regarding assured performance, available storage capacity, and accessibility

of functionality and data.

How can an application component be shared between multiple
tenants enabling individual configuration and tenant-isolation
regarding performance, data volume, and access privileges?

Context

A distributed application (160) is offered to multiple tenants sharing IT resources to

leverage economies of scale. In this scope, tenants may be separate customers or

departments of one company, each accessing a distributed application (160). The

offered application is, therefore, offered to multiple tenants, however, application

components should be shared between tenants to utilize resources better by

avoiding redundant deployments of components. While resource sharing can be

enabled to a certain degree by hardware virtualization, i.e., functionality provided

by a hypervisor (101), sharing higher level application components further

minimizes the portion of the application stack provided exclusively for a single

tenant. The resulting setup can then be scaled better, because tenants’ applications

can be scaled up or down regarding the workload of all tenants. Such a consolida-

tion of workload would also reduce the number of necessary provisioning and

decommissioning operations as application component instances can serve arbi-

trary tenants. However, the sharing of application components is hindered by three

factors. First, tenants may have unique requirements and, thus, expect application

components to be configurable to their individual needs, for example, specifying

the language, color schema, date format etc. used by the user interface. Second,

tenants may not trust each other, thus, they demand strong access controls to their

application. Third, tenants expect an application to behave as if a single tenant was

the only one accessing it, therefore, the workload behavior of one tenant must not

impact the performance that can be assured to another tenant.

Solution

Components on all layers of the application stack are specifically developed to be

used by different tenants. Especially, they ensure isolation between tenants by

214 4 Cloud Application Architecture Patterns

controlling tenant access, processing performance used, and separation of stored

data. Also, the tenant-isolated component can store an individual configuration for

each tenant.

Result

As shown in Fig. 4.22, the tenant-isolated component is accessed under tenant

context: every tenant has to be authenticated. Authenticated accesses to the appli-

cation component are associated with a tenant identifier (tenant ID) attached to the

requests. Based on this identifier, a tenant-specific configuration is identified

according to which the tenant-isolated component adjusts its behavior. Regardless
whether the tenant-isolated component provides user interfaces, processing, or data
handling, the tenant identifier is further used to separate requests of tenants and

ensure a proper isolation.

The tenant-isolated component enables the highest degree of sharing application
functionality between tenants, while keeping them isolated simultaneously. In

contrast to the shared component (210), the tenant-isolated component ensures
that tenants do not influence each other. Depending on the level of the application

stack, tenant-isolation may be realized differently.User interface components (175)
may handle access control to ensure that human users of a tenant may gain access to

the user interface configured by for that tenant and cannot log into the user interface

of a different tenant. In a multi-tenant processing component (180), the perfor-

mance consumed by every tenant may be monitored to enable isolation, thus,

avoiding that one tenant consumes so much processing capacity that the perfor-

mance assured to other tenants is impacted. In data access components (188) data of
different tenants is stored in an isolated fashion. In case of table-based storage

offerings, such as relational database (115) and key-value storage (119), it can be

differentiated between table-based tenant isolation and row-based tenant isolation
[174, 181] as depicted in Fig. 4.23. Table-based tenant isolation creates a different

set of tables for every tenant with the respective access rights. These tables are used

exclusively by a tenant. Row-based tenant isolation adds a tenant identifier to each

data element of that tenant. Therefore, the same table may contain data elements of

different tenants. In either case, the queries performed by the data handling compo-

nent are adjusted respectively to isolate access to the stored data elements.

In scope of table-based and row-based tenant isolation, tenants share the same

database. Of course multi-tenancy can also be introduced by installing the database

software multiple times on a shared server or by using a hypervisor (101) and, thus,
hardware virtualization to share resources. Resource sharing is, however, more

efficient the larger the shared the portion of the application stack is.

Through the use of tenant-isolation application components, the runtime cost per

tenant is reduced and utilization of underlying IT infrastructure is increased. If the

tenant-isolated component is scaled out, the number of instances may respect the

workload of all tenants sharing the component. The cost savings achieved with this

4.4 Multi-Tenancy 215

sharing of resources often enables the cloud application provider to target a larger

target market.

Variations

If the configurations file that is specific to every tenant size is small enough, the

configuration may be provided to the tenant-isolated component with every access

request. This REST style [72, 161] is, for example, used by Web browsers that can

inform an accessed Web server about the preferred language.

Related Patterns

Components may be provided to tenants in two other fashions, each more suited to

specific requirements:

• Shared component (210): if tenants do not require tenant-isolation as enabled by
the tenant-isolated component, a shared component (210) may be used instead.

Components implemented according to this pattern are unaware of the fact that

they are used by different tenants. Therefore, they often only support one

configuration and do not isolate tenant access, assured processing performance,

or access to stored data.

Tenant1_TableName

ID A B C

TableName

ID ATenantID

1

2

3

B C

Fig. 4.23 Table-based tenant isolation (left) and row-based tenant isolation (right)

Fig. 4.22 Clients accessing a tenant-isolated component

216 4 Cloud Application Architecture Patterns

• Dedicated component (218): the customer-required level of tenant-isolation

between tenants may be even higher than what a tenant-isolated component
can offer. Especially, certain laws and regulations may not permit critical

application functionality to be shared with any other tenants. If a tenant has

such requirements, the corresponding application component should be provided

exclusively to the tenant according to the dedicated component (218) pattern. A
dedicated component may also be more suitable if the component configuration

desired by tenants differs to a high degree making the implementation of a

tenant-isolated component handling different configurations too complex.

Known Uses

Chong et al. [174] cover different levels of multi-tenancy in SaaS (55) applications.

Shared components (210) and dedicated components (218) can be associated with

the first two levels defined by the authors: “Level 1: Ad Hoc/Custom” – application

instances are hosted exclusively for a tenant – and “Level 2: Configurable” –

configurable application instances are hosted exclusively. The tenant-isolated com-

ponent pattern describes the means of the next two levels: “Level 3: Configurable,

Multi-Tenant Efficient” and “Level 4: Scalable, Configurable, Multi-tenant Effi-

cient”. Level 3 introduces the need for tenant isolations within one instance of a

component. Level 4 adds the scaling of this application for the combined workload

of all tenants. Both levels are broken down from complete applications to the

application component level by the tenant-isolated component pattern. Especially,
this allows the combination of tenant-isolated componentswith shared components –
functionality that does not have to be tenant-aware – and dedicated components –
custom functionality of tenants – into a distributed application (160) that can be

scaled elastically.

Guo et al. [182] evaluate the different isolation capabilities that should be

considered in this scope: Authentication isolation refers to the ability of tenants

to incorporate the tenant-isolated component with on-premise applications. When

they do so, access to their on-premise environment must not be enabled for other

tenants sharing the tenant-isolated component. Access control isolation enforces

access rights within the tenant-isolated component. Information protection isola-
tion refers to the related access controls for tenant data handled by the tenant-

isolated component. Performance isolation ensures that the workload created by a

tenant does not affect the performance experienced by a different tenant. If one

tenant overloads the application, a different tenant may not experience performance

degradation. Fault isolation ensures that failures in tenant-isolated components

only affect one tenant and do not propagate to others. Finally, the authors cover

administration isolation, thus, administrators of tenants may only change access

rights etc. for the user of the associated tenants. Therefore, multi-tenant

applications often employ a two-level administration: administrators for every

tenant and one administrator managing tenant administrators.

4.4 Multi-Tenancy 217

4.4.3 Dedicated Component

Components providing critical functionality shall be provided exclusively to

tenants while still allowing other components to be shared between tenants.

How can application components that cannot be shared be
integrated into a multi-tenant application?

Context

A distributed application (160) is provided to multiple tenants, who shall share the

application components of the application as much as possible. This sharing

increases the utilization of underlying resources by reducing duplicate deployment

of application components. However, while some application components may be

shared easily between tenants, others may offer functionality that is too critical for

this purpose or needs to be configured very specifically for individual tenants.

Tenant-specific requirements, such as laws and corporate regulations, may hinder

the degree to which tenants may share resources even further. Also, tenants may

require the integration of custom developed and legacy application components into

the distributed application, but these components were often not designed to be

shared by tenants.

Solution

Dedicated components are provided exclusively for each tenant using the applica-

tion (Fig. 4.24). If a component is available as shared component (210) or tenant-
isolated component (214) as well, the decision whether or not to deploy these

components exclusively can be made by every tenant based on individual

requirements. Using a tenant identifier associated with requests, requests are routed

to different application component instances to integrate dedicated components

seamlessly with other shared components or tenant-isolated components.

Result

The deployment of dedicated application component instances enables tenants to
adjust components very flexibly to their requirements. If laws and corporate

regulations restricting resource sharing are the sole motivation for using dedicated

218 4 Cloud Application Architecture Patterns

components, often the same implementations used for shared components (210) or
tenant-isolated components (214) can be used and are merely instantiated exclu-

sively for one tenant. Dedicated components can also be developed exclusively for

a tenant. In this case, the provider may offer an elastic infrastructure (87) or elastic
platform (91) where customers may deploy self-developed components to be

included in the application. Often, such dedicated components are used to extend

the applications functionality to make it suitable for a customers’ application

scenario. However, implementing application components as dedicated
components reduces the degree of sharing between tenants. Therefore, the ability

of the provider to benefit from economies of scale is reduced.

Related Patterns

The dedicated component hinders sharing of application functionality between

tenants, thus, limiting resource sharing to lower layers such as the platform or

virtualization layer of the application stack. Therefore, the following two multi-

tenancy patterns should be preferred whenever possible to maximize the degree of

resource sharing between tenants leading to better resource utilization and reducing

the running cost of the application.

• Shared component (210): components implementing this pattern are unaware

that multiple tenants use them. Therefore, they provide the same functionality to

every tenant and only support one configuration.

• Tenant-isolated component (214): components implementing this pattern are

used by multiple tenants and ensure tenant isolation. Therefore, tenants are

unaware of other tenants using the components. This is realized by making

sure that tenants may not access other tenants’ information and an equal level

Fig. 4.24 Clients accessing dedicated components

4.4 Multi-Tenancy 219

of performance is guaranteed for every tenant regardless of the workload caused

by other tenants.

Known Uses

Salesforce.com [45] started out as a SaaS (55) provider for customer relationship

management (CRM) software. Quickly the need of customers arose to extend the

functionality of this software with custom functionality, for example, to integrate

existing applications with it. Therefore, salesforce.com started its PaaS (49) offer-

ing, Force [44], providing an elastic platform (91) on which custom-developed

dedicated components may be deployed. Therefore, the customer may choose to

use a tenant-isolated SaaS application to handle most of the required application

functionality. The functionality not provided by this application can be custom

developed and hosted as dedicated application components on an elastic platform
(91) offered as PaaS.

Chong et al. [174] cover this deployment model for complete applications

offered as SaaS. They differentiate between dedicated hosted applications on

“Level 1: Ad Hoc/Custom” and “Level 2: Configurable”. On the first level, dedi-

cated standard applications are hosted exclusively for every tenant. On the second

level, these applications still offer standardized functionality, but can be

customized for every tenant. The dedicated component pattern motivates to break

down this behavior to the application component level, so that customers may use

standard application components offered as shared components (210) or tenant-
isolated components (214) when they are sufficient and can integrate dedicated

custom application functionality when required.

220 4 Cloud Application Architecture Patterns

4.5 Cloud Integration

Having introduced the different patterns on how to build cloud-native applications

and their components in the previous section, we cover another dimension in the

following set of patterns. The integration dimension is very important when building

cloud-native applications that are distributed among different cloud environments of

a hybrid cloud (75) or have to be integrated with other applications of one or several
customers hosted in different environments on-premise and in the cloud.

Similar to the data access component (188) described previously, the restricted
data access component (222) makes data of an application or storage offering

(see Sect. 3.5 on Page 109) available to other application components. However,

it ensures that only certain parts of the data are made available that are characterized

as non-critical. Other parts of the data can be obfuscated or removed transparently.

The integration provider (234) pattern describes how to offer a service to

customers that enables them to flexibly integrate on-premise and cloud applications.

The message mover (225) pattern describes how to transparently integrate on-

premise and cloud-based message-oriented middleware (136) so that it becomes

transparent for the sending and receiving applications whether their messages end

up in a cloud-based application or in an on-premise application.

When integrating cloud-applications with on-premise applications it is often

difficult to make the functionality of an on-premise application available in the

cloud, because of firewalls restricting inbound communication to the corporate

network. However, it is often acceptable to poll for external messages or initiate

outbound synchronous communication from on-premise applications. The applica-
tion component proxy (228) pattern describes how to handle the requirement to send

messages to on-premise applications or access them synchronously from the out-

side if communication in this direction is restricted.

4.5 Cloud Integration 221

http://dx.doi.org/10.1007/978-3-7091-1568-8_3

4.5.1 Restricted Data Access Component

Data provided to clients from different environments is adjusted based on

access restrictions.

How can an application component alter provided data based on
access restrictions imposed on different environments?

Context

A distributed application (160) may host application components at different

providers to match the individual requirements of components with best fitting

providers. One factor may be that application components experience different

workload, as described by the workload patterns in Sect. 2.2 on Page 23. For

example, a processing component (180) may only be active during certain times

of the month, when financial reports are generated resulting in periodic workload
(29). Other differentiating factors of the used environments may be assured privacy,

security, and trust. For example, an application may be hosted primarily in a secure

cloud, often a private cloud (66) and performs annual report generations using

resources from a more elastic, but insecure cloud, often a public cloud (62).

However, due to the reduced level of privacy, security, and trust of the public

environment, only anonymized data may be used to generate reports. While the

anonymized data is sufficient for report generation, it has to be provided to

the environment in this form. One approach could be to replicate the data to the

insecure cloud and importing it to the secure environment after processing has

completed. However, problems may arise for various reasons. Data may change in

the secure environment while being processed externally hindering its later import.

Furthermore, the export and import functionality of the application would have to

be adjusted every time the restrictions on data elements changes.

Solution

Data storage restrictions and access privileges are defined for each data element and

the attributes comprising them as shown in Fig. 4.25. Access to these data elements

is provided by separate restricted data access components that interpret the infor-
mation associated with data elements. It adjusts data accordingly through deletion

or obfuscation during every access from an insecure environment.

222 4 Cloud Application Architecture Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_2

Result

The data access component (188) interacting with components in the secure

environment as depicted in the left of Fig. 4.25, may provide the data in an

unaltered form to clients in the secure environment as the assured level of privacy,

security, and trust is sufficient. The restricted data access component providing
data to the insecure environment with a lower level of privacy, security, and trust

alters data elements transparently during accesses. Data element attributes that are,

for example, unrequired for the workload handled in the insecure environment may

be deleted (if they are not required to uniquely identify a data element). Data

element attributes required for the data element identification may instead be

obfuscated. In this case, their values are replaced by random identifiers. The

mapping of the original value and its obfuscation is stored by the restricted data

access component, so data manipulations possibly performed from the insecure

cloud can be de-obfuscated prior to persisting them in the secure environment.

Variations

If a restricted data access component provides read-only access to data elements,

the information used to map obfuscated and original data may be omitted.

Related Patterns
• Managed configuration (247): ideally, both data access components depicted in

Fig. 4.25 are based on the same implementation and are then configured regard-

ing the treatment of different restriction attributes of data elements. The man-
aged configuration pattern describes how to provide such a configuration

centrally for multiple components and their instances.

Secure Insecure

public

restricted

anonymized

#5ef

Fig. 4.25 A data access

component and a restricted

data access component

providing data to a secure and

an insecure environment

4.5 Cloud Integration 223

• Data access component (188): this more general pattern describes how the

idiosyncrasies of accessing storage offerings (see Sect. 3.5 on Page 109) can

be encapsulated. These concepts are also applicable in scope of the restricted
data access component pattern. However, while the data access component
(188) is often implemented together with another component pattern to avoid

unnecessary data serialization and deserialization, the restricted data access
component pattern is implemented as a separate component more regularly as

other components communicating with it are hosted in a different environment.

In the data access component pattern, it is further described how the structure of

data elements can be made configurable to be adjusted later on.

• Application component proxy (228): the restricted data access component com-

municating with the insecure environment often has to be hosted in the secure

environment as the component itself still handles the unaltered data elements.

Therefore, it is often hosted in a private cloud (66) and shall be accessible from a

public cloud (62). However, this direction of access is often restricted by

corporate firewalls. The application component proxy (228) pattern describes

how communication may still be enabled under these conditions.

Known Uses

As the restricted data access component extends the functionality of the data access
component (188) pattern, its known uses are also closely related. For design of the

functions exposed by a restricted data access component, the REST architectural

style [72] and Fowler’s data access routines [173] may be considered similarly. In

addition to this overlap, there are cloud providers focusing on the exposure of

access controlled data. WSO2 offers an integration component, the so called Cloud

Services Gateway [183] exposing application functionality and data hosted in one

environment to a different environment. For Windows Azure [52], there is the

related OData Service [184] that enables the integration of different data sources to
provide data to a large user group with different access privileges.

Further Reading: the restricted data access component
uses concepts similar to the adapter pattern described by

Gamma et al. [2] and the proxy pattern described by

Bushmann et al. [14]. Fowler [15] describes in the remote
façade pattern how the access functions used to retrieve

remote data can be adjusted to improve efficiency.

224 4 Cloud Application Architecture Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_3

4.5.2 Message Mover

Messages are moved automatically between different cloud providers to

provide unified access to application components using messaging.

How can message queues of different providers be integrated
without an impact on the application components using them?

Context

The application components comprising a distributed application (160) often

exchange data using messages. These messages are stored in message queues

provided by a message-oriented middleware (136) to which communication partners

may send messages and from which messages are received. If these queues reside in

different cloud environments that form a hybrid cloud (75) accessibility to queues of
one environment may be restricted for application components that are deployed in

another environment. In such a setup, the idiosyncrasies of bridging these

environments shall be hidden from the communicating application components.

Especially, application components should still be able to send messages regardless

of connectivity between the two environments. Therefore, each of the application

components shall access a message queue hosted in the cloud environment where the

application component itself is hosted in order to ease the access to this queue. The

integration of the environments shall be enabled in a specialized application compo-

nent transparently to the rest of the application.

Solution

A message mover is used to integrate message queues hosted in different

environments by receiving messages from one queue and transferring it to a

queue in other environments as depicted in Fig. 4.26. This process is completely

hidden from other application components.

Result

The message mover integrates queues in different environment to provide one

logical queue to all components hosted in the same environment. Communicating

application components may always access a local queue, even though the commu-

nication partner may reside in a different environment and accesses a message

4.5 Cloud Integration 225

queue provided by a different message-oriented middleware (136). The message
mover, thus, may also have to handle message format transformation if the different

environments expect different message formats to be used. If multiple

environments are integrated this way, a common message interchange format

may be agreed upon for an application to ease the creation of message movers.
Hohpe and Woolf [1] cover best practices for creation of a message format – the

canonical data model pattern, transformation of message formats – the message
translator pattern, and message format normalization – the normalizer pattern.

The integration of the environments regarding the creation of communication

links is also simplified by the message mover, as only the message mover has to be

enabled to access both integrated environments. The deployment location of the

message mover is commonly based on the communication restrictions of the

environments. For example, if the message mover integrates queues in a private
cloud (66) and a public cloud (62), it is most likely to be hosted in the private cloud,
as communication leaving the private cloud is more likely to be allowed than

inbound communication initiated from the outside.

Variations

The message mover may be implemented internally by other application

components. In this variation, the component itself maintains a local queue that is

directly accessible by the implemented application functions. A local message

mover takes messages from this internal queue and sends it to a message queue

provided by a message-oriented middleware (136). This makes the component

more resilient to connectivity problems and it may operate for some time even if

the component itself does not have connectivity to any other application

components.

Related Patterns
• At-least-once delivery (144) and exactly-once delivery (141): a message-ori-

ented middleware (136) may assure that messages are delivered successfully at

least once or exactly once as described by the corresponding patterns. In this

scope, the message mover should assure the same delivery behavior as the

integrated queues, if possible.

Fig. 4.26 Message mover

integrating queues of two

environments

226 4 Cloud Application Architecture Patterns

• Idempotent processor (197): if one of the integrated queues assures at-least-once
delivery (144) and the other queue assures exactly-once delivery (141), the

message mover should implement the idempotent processor pattern. When it

receives messages from the queue assuring at-least-once delivery, the message

mover, therefore, should filter the messages it has already forwarded to assure

exactly-once delivery to components expecting this kind of behavior.

• Transaction-based processor (201) and timeout-based message processor (204):
clients may interact with a message-oriented middleware (136) according to

these patterns, to assure that messages are processed successfully exactly once

(transaction-based processor) or at least once (timeout-based message proces-
sor). Themessage mover should implement one of these patterns. The successful

processing, in this scope, would mean that the message mover has successfully
moved a message from one of the integrated message queues to the other

message queue.

Known Uses

Functionality to create message movers is often provided by a message-oriented
middleware (136). The only task left for application developers is to define routing

rules in a specific format understood by the message-oriented middleware. These
routing rules are then deployed to the message-oriented middleware where

messages are then moved between message queues managed internally and mes-

sage queues provided externally based on defined rules. A common example for an

open source implementation that supports the definition of message routing rules is

Apache Camel [141], which is also part of the Apache Service Mix [57] enterprise

service bus (ESB) [11].

4.5 Cloud Integration 227

4.5.3 Application Component Proxy

An application component is made available in an environment from where it

cannot be accessed directly by deploying an application component proxy.

The communication between this proxy and the application component is

initiated and maintained from the environment where communication is

unrestricted.

How can an application component be accessed if direct access to its
hosting environment is restricted?

Context

Application components of a distributed application (160) are deployed in different
cloud environments that form a hybrid cloud (75). These environments often have

different privacy, security, and trust properties. The communication from

environments with lower privacy, security, and trust to environments with higher

privacy, security, and trust is often restricted through the use of firewalls. However,

application components hosted in unrestricted environments, for example, a public
cloud (62), may have to access application components hosted in a restricted

environment, for example a private cloud (66) or corporate data center, but direct

access may be unavailable. Only the components hosted in the restricted environ-

ment may access others in unrestricted environments.

Solution

The interface of a restricted application component is duplicated to form a proxy

component as depicted in Fig. 4.27. Synchronous and asynchronous communica-

tion with this proxy component is initiated and maintained from the restricted

environment that may access the unrestricted environment directly. Application

components hosted in the unrestricted environment may then communicate with the

proxy component that forwards any communication to the restricted application

component.

228 4 Cloud Application Architecture Patterns

Result

Direct access to the restricted component is avoided as its functionality is accessed

through its proxy component. The establishment of the communication channel

between the restricted component and its proxy component depends on the style of

communication.

If the restricted component shall be accessed synchronously, its functionality

must return results immediately. A synchronous communication channel is

initialized similarly to accessing a webserver on the Internet from the restricted

environment, where the firewall has to allow the requested website to be transferred

back into the restricted environment. A synchronous communication is established

with the proxy component by initiating such a synchronous request that the firewall

allows. The reply to this synchronous request then contains the requests send to the

proxy component from other application component. As these requests, therefore,

appear to be an answer to a request sent out from the restricted environment, they

may pass through the firewall. In case the request initialized from the restricted

component times out, it reinitializes the synchronous communication channel by re-

requesting communication with the proxy component, thus, always maintaining a

connection.

If the restricted component is accessed asynchronously, communication is

realized through the use of message queues provided in the unrestricted environ-

ment by a message-oriented middleware (136). Asynchronous messages to the

proxy component are put into an input queue from which the restricted component

retrieves them. Result messages are put into an output queue from where the proxy

component retrieves them.

Variations

In case of asynchronous communication with the proxy component, other applica-

tion components may access the message queues in the unrestricted environment

directly. In this variation, it may, therefore, be unnecessary to deploy a separate

proxy component in the unrestricted environment.

Fig. 4.27 Application component proxy bridging two environments

4.5 Cloud Integration 229

Related Patterns
• Message mover (225): to hide the fact from the restricted component that it

accesses a queue in a different environment than where it is hosted, a message
mover (225) may be used to let the restricted component transparently access a

different queue hosted in the secure environment.

• External patterns: the application component proxy pattern is based on concepts
of the proxy pattern [2] and the façade pattern described by Gamma et al. [2] that

cover a similar proxy for interfaces of objects in the scope of object-oriented

programming. Buschmann et al. [14] also define a proxy pattern used in

distributed applications.

Known Uses

The application component proxy has originally been described by us in [26], where
it was called “application component gateway”. Microsoft guides the implementa-

tion of this pattern for synchronous communication between the Windows Azure

cloud and another environment. The Azure Service Bus Relay [185] integrates

application components developed for Windows Azure through the automatic

generation of proxy components. WSO2 provides an enterprise service bus [183]

that can be installed in different environments and may then be used to create so

called Cloud Services Gateway to access services in these different environments

regardless of where they are hosted.

230 4 Cloud Application Architecture Patterns

4.5.4 Compliant Data Replication

Data is replicated among multiple environments that may handle different

data subsets. During replication data is obfuscated and deleted depending on

laws and security regulations. Data updates are adjusted automatically to

reflect the different data structures handled by environments.

§ How can data be replicated between environments if some
environments may only handle subsets of the data due to laws and
corporate regulations?

Context

Distributed applications (160) that are hosted in a hybrid cloud (75) often require

access to the same data from different application components of the application.

For this purpose, data could be hosted exclusively in one cloud environment and

accessed from all others. Such a setup is described by the data access component
(188) pattern and the restricted data access component (222) pattern. However, if
application components accessing the data are globally distributed, data access

performance may be reduced drastically if data is only stored in one geographic

location. Therefore, data may have to be replicated among different cloud

environments.

Due to laws and corporate regulations, some of these environments may only

handle a subset of the available data or data has to be obfuscated. Furthermore, the

level of trust in the provider and especially in other users of the environment may be

too low to store the complete data set. The data replication, therefore, needs to be

compliant to these laws and regulations and has to reflect different levels of privacy,

security, and trust. Often, the complete data set may only be stored in the most

secure environment and shall be replicated to other, less secure environments in an

automated fashion. Therefore, during the automatic updates of replicas in different

environments data has to be altered automatically.

Solution

Data replicas in different environments are updated asynchronously using messaging,

thus ensuring eventual consistency (126) of the replicas. As seen in Fig. 4.28,

message filters introduced by Hohpe and Woolf [1] are used to delete and obfuscate

4.5 Cloud Integration 231

certain data elements in these messages as they leave the trusted environment.

Information about the data manipulations, for example, the original data that has

been obfuscated or values that have been deleted are stored in a storage offering, for

example, a key-value storage (119) or a relational database (115). If data is then

altered in the less secure environment, the corresponding update message is enriched

by a message enricher, also introduced by Hohpe and Woolf [1], as it enters the

secure environment. This enrichment is performed using information previously

stored by the message filter and may also query the original data replica.

Result

Since the replicas are updated following an eventually consistent (126) approach, a
message is generated when replica A is updated. When this message leaves the

trusted environment, its content is filtered. During this filtering process, data

elements may be deleted completely from the messages or are obfuscated, for

example, by replacing them with random data. The latter is required, if the filtered

data element resembles a data identifier or “key” required to correlate messages to

data elements. Replica B is updated according to the adjusted message it receives. If

replica B is then changed, the message is enriched when it enters the secure

environment. During this enrichment, obfuscated elements are de-obfuscated

using information stored during the filtering process. Deleted information can be

Secure Insecure

Replica A

#5ef3
Message

Filter

Message
Enricher

Storage
Offering Replica B #5ef3

#5ef3

Fig. 4.28 Compliant data replication between a secure cloud and an insecure cloud

232 4 Cloud Application Architecture Patterns

enriched if necessary by querying replica A. Note that access privileges on replica B

may differ from the original replica. For example, clients should not be allowed to

alter obfuscated data as this would hinder the correlation with the original data

element. A challenge that arises from this setup is that the application components

provisioned in the less secure environment have to be able to cope with the reduced

and obfuscated data. These requirements have to be maintained during the applica-

tion development and must be considered also during its deployment.

Related Patterns
• Data access component (188) and restricted data access component (222): if

data does not have to be replicated but can be accessed from the less secure

environment, these two patterns may be used. In this scope, an application
component proxy (228) may also be necessary, if the access to the secure

environment is further restricted using firewalls, for example.

• Hybrid backend (317): this pattern describes how data-intensive processing may

use a cloud environment while the remainder of the application resides in a

different environment. The compliant data replication pattern is often applicable
here to replicate the data between these two environments.

• Eventual consistency (126): the consistency behavior of the data replicas is

eventually consistent as messages are used by the compliant data replication

pattern.

• At-least-once delivery (144) and exactly-once delivery (141): if the data update
messages are exchanged using a message queue provided by a message-oriented
middleware (136), the delivery behavior of this queue must be considered by the

implementation of the message filter and the message enricher. Especially, if at-
least-once delivery is assured, thus, messages may be received multiple times,

the message filter and message enricher should implement the idempotent
processor (197) pattern to cope with message duplicates.

Known Uses

Many key-value storage (119) offerings use messaging internally to propagate

changes. If these can be configured to use a message-oriented middleware (136)

for this message exchange, the routing functionality and message-transformation

functionality provided by the message-oriented middleware may be used to per-

form the transformation required by the compliant data replication pattern. For

example, the key-value storage Apache CouchDB [98] can be configured to use

Apache Camel [141] for message exchange. In this scope the transformation

functionality of Apache Camel may be used to adjust the messages as desired.

4.5 Cloud Integration 233

4.5.5 Integration Provider

Integration functionality such as messaging and shared data is hosted by a

separate provider to enable integrate of otherwise separated hosting

environments.

How can application components that reside in different
environments, possibly belonging to different companies, be
integrated through a third-party provider?

Context

When companies collaborate or one company has to integrate application of

different regional offices, different applications or the components of a distributed
application (160) are distributed among different hosting environments. Commu-

nication between these environments may be restricted. Especially, hosting

environments may restrict any incoming communication initiated from the outside.

Communication leaving the restricted environments is, however, often allowed.

Therefore, additional integration components are required that have to be accessible

from restricted environments. The establishment of demilitarized zones (DMZ)

[137] at the restricted environments to contain shared integration components

may be complicated and time-consuming. Especially, if the integration is only

needed during a small time frame the use of DMZs may not be feasible. Company

regulations may even prohibit it completely.

Solution

The distributed applications or their components communicate using integration

components offered by a third party provider. This provider hosts, for example, a

message-oriented middleware (136) or an enterprise service bus (ESB) [11] to

enable loose coupling (156) between environments. The cloud of this provider is

made accessible from all other environments. Communication with this environ-

ment is always initialed and maintained from the restricted ones through the use of

application component proxies (228) ormessage movers (225). Shared data is either
stored in storage offerings provided by the integration provider or through the use

of restricted data access components (222) exposing data stored in the restricted

environments to the integration environment.

234 4 Cloud Application Architecture Patterns

Result

The restricted environments communicate through the third-party provider.

Figure 4.29 depicts such a scenario for two private clouds (66) (A and B) on the

left integrated through an integration provider depicted on the right. Communication

may be asynchronous or synchronous. In addition to the communication between the

environments, data handling may be integrated through provider- supplied storage

offerings accessed by private data access components (188) and restricted data
access components (222) that enable the access to private data from the integration

environment. The individual challenges to enable asynchronous communication,

synchronous communication, and data access can be addressed as follows.

Asynchronous communication: information is provided in the integration

environment viamessage queues or pub-sub topics provided by a message-oriented
middleware (136). This communication offering is often provided in both

environments and integrated using a message mover (225) depicted in the middle

of Fig. 4.29. As inbound communication to the private environments is commonly

restricted, the message mover in the restricted environments polls for new messages

at the integration provider and moves them to the restricted environment.

Private A / Private B Integration Provider

Storage
Offerings

User Interface
Component

Processing
Component

Data Access
Component

Restricted
Data Access
Component

Message-
oriented

Middleware

Message-
oriented

Middleware

Storage
Offerings

Application
Component

Proxy

Message
Mover

Fig. 4.29 Integration provider integrating two private environments

4.5 Cloud Integration 235

Synchronous communication: an application component proxy (228) deployed
in the private environments enables synchronous communication if a privately

hosted application component shall be accessible in the integration environment

and inbound communication to the private environment is restricted. This is

depicted exemplarily for user interface components (175) in Fig. 4.29. The appli-
cation component proxy (228) accesses a proxy component in the integration

environment to which it maintains a communication channel at all times. Inbound

communication to the private environment is then enabled through this channel. The

application component proxy (228) may also be used to integrate message queues

for asynchronous communication in a similar manner to the message mover (225).
Data access: shared data is either handled by storage offerings provided by the

integration provider or by restricted data access components (222). Storage

offerings of the integration provider are either accessed from inside the integration

environment or from the data access components (188) deployed in the private

environments. If data shall be stored in the private environments but shall be made

accessible from the integration environments, restricted data access components
(222) may be used to alter exposed data according to access privileges. Compliant
data replication (231) can be used alternatively, if data in the private environment

and the integration environment shall be kept in sync.

Related Patterns
• Hybrid processing (308) and hybrid backend (317): these two patterns describe in

more detail how processing functionality and data-intensive processing function-

ality can be distributed among the different environments of a hybrid cloud.

These concepts can be used in scope of the integration provider pattern as well.

• Hybrid data (311): if only data shall be shared between the integrated

environments, the hybrid data pattern may be considered.

• Restricted data access component (222): if data shall not be moved to the

integration provider, but shall still be made accessible to other parties, this

pattern can be used. It describes how access to some data elements may be

restricted and how data can be obfuscated.

• Application component proxy (228): this pattern describes how a component that

is hosted in a restricted, possibly private environment can be made accessible in

a different environment. It may, therefore, be used to make internal application

components accessible in the integration provider environment. It covers both

synchronous and asynchronous communication approaches mentioned above to

interact with application components.

• Message mover (225): if application components access message queues

provided by a message-oriented middleware (136) in both the internal environ-

ment and the environment of the integration provider, the application implemen-

tation can be complicated and could become tightly coupled to the used

integration provider. The message mover pattern describes how the physical

location of a message queue can be hidden from a message sender and receiver,

thus, making the application more loosely coupled (156).

236 4 Cloud Application Architecture Patterns

• Compliant data replication (231): this pattern describes how data may be

replicated between different environments while alternating data transparently

to adhere laws, corporate regulations, as well as different levels of security,

privacy, and trust.

Known Uses

In many cases, cloud providers offer functionality to connect a private environ-

ment with their cloud in a secure manner. There is Amazon’s Virtual Private

Cloud (VPC) [55] a separated virtual part of the Amazon cloud that is not publicly

accessible. It can be integrated with a private environment using a virtual private

network (VPN) as described in the virtual networking (132) pattern. A similar

feature is available in Microsoft Windows Azure’s virtual networking offering.

When connected to different private clouds (66) and hosting environments, for

example, from different branch offices, these services may be used to serve as an

integration provider.

4.5 Cloud Integration 237

Cloud Application Management Patterns 5

This chapter covers architectural patterns that describe how cloud applications

as described in Chap. 4, can be managed automatically by separate components

(Fig. 5.1). These management components (Sect. 5.2) handle the automated

management of cloud-native applications regarding dynamic elasticity, resiliency,

updates etc. Due to the pay-per-use property of cloud applications covered in Sect.

1.1, scaling tasks should be automated, because the number of provisioned IT

resources, i.e., the number of provisioned virtual servers, the size of booked storage

or the number of application component instances directly affects the runtime costs of

an application. Furthermore, environment-based availability (98) assurances, where
individual cloud resources can fail at any time, or a node-based availability (95) that

Fig. 5.1 Map of the cloud application management patterns

All figures published with kind permission of # The Authors 2014. See list of figures.

C. Fehling et al., Cloud Computing Patterns,
DOI 10.1007/978-3-7091-1568-8_5, # Springer-Verlag Wien 2014

239

http://dx.doi.org/10.1007/978-3-7091-1568-8_4
http://dx.doi.org/10.1007/978-3-7091-1568-8_1

does not meet requirements of an application, as well as network partitions, may

create the need to monitor applications and automatically react to resource failures.

The management processes (Sect. 5.3) executed by management components are

described as separate patterns. They address tasks such as elasticity management,

version updates, or failure resiliency. In the overview, we introduce the covered

patterns and show how the management components are integrated into a cloud

native application.

5.1 Overview of Application Management Patterns

Management components (Sect. 5.2) form the execution environment for manage-

ment processes (Sect. 5.3). Therefore, they describe the architectural components

that enable the automated execution of management processes handling application

components and system resources. Provider adapters (243) are used to encapsulate
provider interfaces. The encapsulated functionality may then be accessed from

other non-provider-specific management components. Especially, encapsulation

can be used to trigger other management processes when a certain provider function

is called, for example, if a failure in a provider-supplied function has to be

addressed. Most management patterns handle a large set of application components

and, often, a coordinated behavior of these components is required. Managed
configurations (247) centrally control the behavior of application component

instances and distributed management components in a unified fashion. An elastic-
ity manager (250) enables automated horizontal scalability based on resource

utilization. To manage elasticity and distribute workload across horizontally scaled

instances based on the number of handled requests the elastic load balancer (254) is
needed. When communicating asynchronously via queues, similar behavior can be

realized via an elastic queue (257) that dynamically adjusts the number of message

processing components depending on the number of pending requests. If one of

these elasticity management components is used, it can implement the elasticity
management process (267) describing the basic process to be followed when

scaling and application up or down. This process can then be extended further. A

standby pooling process (279) optimizes the provisioning and decommissioning of

resources by considering the timeframe for which resources have been paid for

prior to decommissioning them. Additionally, it can be used to keep component

instances on standby to speed up provisioning for critical application components.

If new resources still cannot be obtained fast enough from the cloud provider during

a workload increase, the feature flag management process (271) enables an appli-

cation to degrade gracefully by replacing or disabling less important functionality.

Finally, when new application component versions have been developed, an update
transition process (275) can be used to seamlessly switch between different

versions with minimal or no downtime of the application component.

Similar to the elasticity considerations, availability of applications is typically a

very important topic. Depending on the requirements of an application or platform,

the node-based availability (95) assured by elastic infrastructures (87) or elastic

240 5 Cloud Application Management Patterns

platforms (91) may be insufficient. In case of environment-based availability (98)

no assurance is made regarding the availability of individual hosted IT resources.

Under these conditions, a watchdog (260) monitors applications and platforms and

starts new IT resources or application components in case of failures. It does so by

following a resiliency management process (283) to cope with failures.

The management components and management processes presented in this

chapter are commonly integrated into the cloud application and cloud environment

as depicted in Fig. 5.2. An elastic platform (91) or an elastic infrastructure (87) as
seen on the lower right side of the figure provides a runtime environment to

application components. Both of these patterns provide monitoring and resource

management functionality with which the management components and manage-

ment processes interact. Application components are either hosted directly in the

environment provided by the elastic platform or on virtual servers deployed on the

elastic infrastructure. Requests sent to these components from application users or

other application components usually traverse a load balancer or a message queue

to distribute the workload among multiple component instances. The management

components described in Sect. 5.2 interact with these load balancing components

and react to certain conditions, for example, an increased number of queued

messages. Similar notifications and runtime information about the application are

also provided to management components by the monitoring interface of the elastic
infrastructure or the elastic platform. Section 5.3 describes the behavior of man-

agement components in the covered management process patterns.

Fig. 5.2 Abstract management architecture

5.1 Overview of Application Management Patterns 241

5.2 Management Components

In order to manage cloud applications automatically, management functionality has

to be integrated with components providing application functionality. Due to their

nature, this management functionality is often tightly coupled with the interfaces

offered by cloud providers, i.e., they depend on the provider-specific operations and

protocols used. To avoid a tight-coupling of the overall application with the provider,

management functionality should be encapsulated into separate components. This

can be used to control dependencies of applications on interfaces of a specific vendor

and also simplifies the reuse of management functionality in multiple applications

hosted at the same cloud provider. Some of the management components may be

provider-supplied and then have to be integrated with custom applications.

242 5 Cloud Application Management Patterns

5.2.1 Provider Adapter

Provider interfaces are encapsulated and mapped to unified interfaces used in

applications to separate concerns of interactions with the provider from

application functionality.

How can the dependencies of an application component on a
provider-specific interface be managed?

Context

Cloud providers offer many interfaces that can be used in application components of

a distributed application (160). Elastic infrastructures (87) and elastic platforms (91)
offer interfaces through which resources may be provisioned, decommissioned, and

monitored. Cloud offerings (see Chap. 3) providing computation, storage, and com-

munication functionality each offer individual interfaces with specific operations,

authentication mechanisms, communication protocols etc. If a component directly

interacts with these interfaces, its implementation becomes strongly interleaved with

the specific functions offered and the protocols used. This may complicate future

adjustments to an application components implementation if a different provider shall

be used or a provider interface changes. Therefore, the concerns to interact with a

provider shall be separated from application functionality to identify necessary

adjustments easier if a provider interface changes.

Solution

A provider adapter wraps the provider interfaces into an abstract interface to be

used within the scope of the distributed application (160). In doing so, the provider
adapter encapsulates all provider-specific implementations required for authenti-

cation, data formatting etc. Provider adapters may consolidate multiple differ-

ent provider interfaces. The provider adapter pattern, thus, ensures separation of
concerns between application components accessing provider functionality and

application components providing application functionality. Therefore, if a

provider interface changes or a provider shall be exchanged, the part of the

distributed application to be adjusted may be identified easier. Of course, this

separation of concerns does not reduce the complexity of this adjustment for

provider exchange or leads to a general exchangeability of cloud providers. For

5.2 Management Components 243

http://dx.doi.org/10.1007/978-3-7091-1568-8_3

this purpose, the interfaces of providers would have to be standardized. Only if a

customer decides to use a small number of cloud providers and develops

provider adapters that are standardized internally to his or her company, pro-

vider interchangeability may be realized to a certain degree, i.e., within one

company. Similarly, a provider adaptermay be used by a company to control the

subset of the provider-supplied functionality that may be used by developers to

create custom applications. Such restrictions may also reduce necessary changes

to application code if a provider is changed. A provider adapter may, therefore,

also be used to enforce that developers may only use certain provider function-

ality to reduce or control the chance of vendor lock-ins.

Result

The provider adapter accesses interfaces of processing offerings, communication

offerings, and storage offerings and maps provided functions to its own interface.

The interface of the provider adapter can then be accessed by other application

components. Especially, protocols, authentication, and communication styles

(synchronous or asynchronous) may differ between the provider interfaces and the

interfaces offered by the provider adapter. The provider adapter, therefore,

enables loose coupling (156) between the provider interface and the application’s

implementation. In Fig. 5.3, an exemplary provider adapter is depicted encapsulating
the access to a provider-supplied message queue offered by a message-oriented
middleware (136). Other application components may interact with the provider

adapter component synchronously even though the messaging offered by the cloud

provider is asynchronous. When supporting different communication styles in this

way, the provider adapter faces challenges regarding timeouts of synchronous

interactions that may be significantly smaller than the asynchronous communication

via messaging actually requires.

The exemplary provider adapter depicted in Fig. 5.4 encapsulates the provision-
ing functionality of an elastic infrastructure (87) and an elastic platform (91). Even

though these accesses are synchronous, other application components may send

messages to the provider adapter in order to provision new application

components. Depending on the environment where the requested application com-

ponent is hosted, the provider adapter automatically forwards the provisioning

request to the elastic infrastructure (87) or the elastic platform (91).

Fig. 5.3 Exemplary provider adapter component accessed synchronously

244 5 Cloud Application Management Patterns

The encapsulation of provider interface specifics makes the effort for the

replacement of cloud offerings easier to determine, because the amount of imple-

mentation code to be adjusted can be easier identified. In case a cloud offering shall

be replaced, the adapter implementation needs to be adjusted to the different

interface provided by the new cloud offering. This adjustment may still be difficult

and complex, but through the encapsulation of provider-specific interfaces, the

amount of application code that has to be revised can be controlled more efficiently.

The use of provider adapters, therefore, makes the effort to switch cloud providers

more predictable and manageable. However, the actual adjustments may still be

hard to realize, especially, if providers use different communication styles.

Variations

A provider adapter can be realized in form of a programming library to be used in

the implementation of another application component. This reduces the need for

serialization and deserialization of requests as the provider adapter functionality is

directly available in the other application components code.

Related Patterns
• Data access component (188): if provider interfaces of storage offerings are

accessed, this pattern describes how to implement a provider adapter and,

furthermore, how to change data consistency behavior in the adapter

implementation.

• Multi-component image (206): similar to the above mentioned variation the

provider adapter may be deployed close to the application components

accessing it, for example, on the same virtual server. This summarization of

application component implementations is described by the multi-component

image.

Fig. 5.4 Exemplary provider

adapter component accessed

asynchronously

5.2 Management Components 245

Known Uses

In object-oriented applications, there is a similar concept to encapsulate interface

interaction functionality in special components. Gamma et al. described this in the

adapter pattern and façade pattern [2]. Buschmann et al. [14] describe a proxy
pattern used in distributed applications that is also used to encapsulate interfaces.

Apache Libcloud [61] is a programming library to abstract from the differences and

idiosyncrasies of multiple cloud providers. If application developers use this inter-

face in their applications, the used cloud provider remains interchangeable to a

certain degree as the concrete behavior of accessed functions may still differ.

Deltacloud [60] or Jclouds [62] adapts to different cloud providers in a similar

fashion and provides a common REST [72, 161] interface.

Further Reading: provider adapters only make the

involvement of a cloud application with provider interfaces

manageable. For a desirable exchangeability of cloud

providers, their interfaces would have to be standardized.

The provider adapter pattern can only be used for this

purpose company-internally, if the company decides to use

a small number of cloud providers and standardizes the

interface of provider adapters used to access these

providers. To solve the issue of interchangeability in

general, industry standardization efforts have been

initialized, for example:

OASIS: Topology and Orchestration Specification for

Cloud Applications (TOSCA) [186]

DMTF: Cloud Infrastructure Management Interface

(CIMI) [187]

IEEE: Cloud Profiles Working Group (CPWG) [188]

IEEE: Intercloud Working Group (ICWG) [189]

246 5 Cloud Application Management Patterns

5.2.2 Managed Configuration

Scaled-out application components should use a centrally stored configura-

tion to provide a unified behavior that can be adjusted simultaneously.

How can the configuration of scaled out application component
instances be controlled in a coordinated fashion?

Context

Application components of a distributed application (160) are likely to have

particular configuration parameters. Exemplary configuration parameters are

colors, logos and language of user interface components (175), data storage

locations used by processing components (180), or the location of credentials

used by data access components (188) to interact with storage offerings. Storing
this configuration information together with the application component imple-

mentation can be unpractical as it results in more overhead in case of configura-

tion changes as each instance of the application component must be updated

separately. Whenever a change occurs, the corresponding machine image stored

in an elastic infrastructure (87) or the component image stored in an elastic
platform (91) would have to be adjusted, so that newly provisioned application

component instances use the new configuration. Alternatively, the configuration

could be adjusted after a component has been provisioned and then has to be

maintained during the runtime as well. Instead of configuring each running

instance and adjusting provisioning images in case of configuration changes, the

configuration of application component instances should be managed in a more

coordinated fashion. This is especially needed if a large number of application

component instances have to be configured or if the configuration changes very

frequently.

Solution

As all application component instances of the same type expect the same config-

uration specification, this configuration is stored in a central storage offering,

commonly, a relational database (115), key-value storage (119), or blob storage
(112) from where it is accessed by all running component instances. Application

5.2 Management Components 247

component instances can obtain the configuration following two approaches –

polling and pushing. Component instances poll the storage offering by accessing

it periodically to check for configurations and configuration changes as depicted

in the left side of Fig. 5.5. Pushing means that the configuration is send to the

application component instances when they are provisioned or the configuration

changes. This is commonly done asynchronously through the use of pub-sub

channels provided by a message-oriented middleware (136). Pub-sub channels

are also described as a pattern by Hohpe and Woolf [1].

Result

As the component instances access externally stored configuration, component

images handled by elastic infrastructures and elastic platforms do not have to be

adjusted if the configuration changes and the configuration of running application

components is easier to adjust. The design decision whether to push or to pull the

configuration from the central storage offerings is mainly influenced by the reac-

tiveness required during configuration changes. If changes have to be reflected

quickly, application components would have to pull configuration often. This could

result in a larger load on the storage offering. Especially, if the configuration

changes seldom, this approach may be inefficient. In this case, pushing configura-

tion changes to the application component instances may be a better solution.

Related Patterns
• Blob storage (112), relational database (115), and key-value storage (119):

these storage offerings can be used to handle pulled configurations centrally. If

a reactive and coordinated adjustment of component behavior is required, the

storage offering should ensure strict consistency (123) to ensure that all applica-
tion components can retrieve the new configuration at a distinct point in time. If

the storage offering is eventually consistent (126), application component

instances might be provided with different configuration versions even if they

query the storage simultaneously.

Fig. 5.5 Polling (left) and pushing (right) of managed configurations

248 5 Cloud Application Management Patterns

• Message-oriented middleware (136): configurations may be pushed to applica-

tion components using a message queue provided by a message-oriented
middleware (136). Message queues are used to deliver messages to one receiver.

In scope of configuration updates, messages, however, have to be received by a

multitude of application components in many use cases. In scope of this delivery

behavior a pub-sub channel also provided by a message-oriented middleware
should be used instead.

Known Uses

Chef [190] provides centralized configuration management that pushes information

to managed systems or allows a client to pull it. Puppet [191] follows a similar

approach to manage configuration files centrally. Amazon’s best practices [93, 154]

motivate the use of a centralized configuration that is pulled from virtual servers

during startup.

5.2 Management Components 249

5.2.3 Elasticity Manager

The utilization of IT resources on which an elastically scaled-out application

is hosted, for example, virtual servers is used to determine the number of

required application component instances.

How can the number of required application component instances be
determined based on the utilization of hosting IT resources?

Context

Application components of a distributed application (160) shall be scaled-out auto-

matically. They are, therefore, instantiated multiple times to exploit the distributed

nature of a cloud environment better by leveraging the capabilities of multiple cloud

resources. The instances of applications components shall be provisioned and

decommissioned automatically based on the current workload experienced by the

application. This is, especially, effective if the application experiences periodic
workload (29), unpredictable workload (36), or continuously changing workload
(40). It enables the application to benefit from the pay-per-use pricing models of the

IaaS (45) and PaaS (49) cloud service models, because the number of deployed

component instances directly affects the running cost of the application. The

applications considered here, therefore, use an elastic infrastructure (87) or an elastic
platform (91) as runtime environment, respectively. Through such automation scaling,

the number of used resources can be aligned to changing workload dynamically and

quickly.

Solution

The utilization of cloud resources on which application component instances are

deployed is monitored by an elasticity manager. In many cases, this information is

the utilization of a virtual server on which an application component is hosted. This

information is used to determine the number of required instances.

Result

As depicted in Fig. 5.6, users, other components or applications send requests to

application components managed by the elasticity manager. The workload

250 5 Cloud Application Management Patterns

resulting from these accesses is determined by monitoring the utilization of the

hosting environment provided by the elastic infrastructure or elastic platform.
Utilization is, often, measured on the hardware level, for example, in form of

load on central processing units (CPU), memory usage, network I/O etc. The

monitored utilization information is then extracted from the elastic infrastructure,
elastic platform, or from the component itself and passed to the elasticity manager.
This manager uses the utilization information to determine the number of required

component instances and adjusts it using provisioning and decommissioning func-

tionality of the elastic infrastructure (87) or elastic platform (91) to ensure resource

utilization within defined thresholds.

If an elastic infrastructure is used server images containing the application

components, are maintained in the image storage of the elastic infrastructure to

speed up provisioning. The distribution of application components among server

images is a critical design decision in this scope since it affects the granularity by

which the application can be scaled out. More information about this issue is given

by the multi-component image (206) pattern.
In case of an elastic platform, the notion about virtual servers and their utiliza-

tion is commonly hidden from the customer. The elasticity manager, therefore,
requires the variation of the elastic platform, where virtual servers are still visible to
customers, but the operating systems and middleware is completely maintained by

the provider.

Related Patterns
• Elastic load balancer (254) and elastic queue (257): the elasticity manager may

be substituted by the elastic load balancer (254) or elastic queue (257) pattern if
the utilization of hosting IT resources cannot be used to make scaling decisions.

This is especially the case, in an elastic platform where this information may not

Fig. 5.6 Elasticity manager interacting with an elastic platform or elastic infrastructure

5.2 Management Components 251

provided to customers. Even if the utilization of hosting IT resources is made

available, the use of elastic load balancers and elastic queues may still enable a

more sophisticated scaling behavior for two reasons. First, they can monitor the

utilization of individual application components independent on their actual

distribution among IT resources. This is especially helpful if multiple applica-

tion components share the same virtual server. Second, elastic queues can be

used to actively influence the point in time when workload is processed. There-

fore, they can respect environmental factors, such as fluctuating resource prices

in scaling decisions.

• Provider adapter (243): as an elasticity manager interacts with a cloud provider

interface, it may become dependent on that interface. To control this and to

enable an elasticity manager to be easier reusable, the functionality accessing

the provider interface may be encapsulated in a provider adapter (243) to assure
separation of concerns between the functionality of the elasticity manager
handling elastic scaling and functionality accessing the provider interface.

• Stateless component (171): the scaled-out application component should ideally

rely on external state information, either passed to it with every request or

retrieved from a storage offering (see Sect. 3.5 on Page 109). Implementation of

the stateless component pattern, therefore, simplifies the provisioning and

decommissioning of component instances, as no data handled by the component

has to be extracted prior to decommissioning or inserted during the provisioning.

• Transaction-based processor (201) and timeout-based message processor (204):
when a component instance is removed from the application while it is

processing a message or accesses data in a storage offering, the elasticity
manager has to coordinate decommissioning to ensure that no data is lost.

This can be simplified if application components process messages or data in

transactions or acknowledge the successful processing to a message-oriented
middleware (136), as described by the transaction-based processor pattern and

timeout-based processor pattern, respectively. A message-oriented middleware
needs to support this kind of interaction with message processing components, as

described by the transaction-based delivery (146) pattern and timeout-based
delivery (149) pattern.

Known Uses

Many providers, such as RightScale [192] and Scalr [193], offer external monitor-

ing of virtual servers deployed in Amazon EC2 [18] to enable elastic scaling.

Amazon also has its own service for this purpose, called Amazon Auto Scaling

[194]. In Windows Azure, there is the Application Autoscaling Block [195] that

enables developers to scale applications based on workload.

The scaling functionality of many cloud providers has in common that it may be

configured by rules. Therefore, developers can, for example, specify that two more

application component instances shall be started once an average utilization of

252 5 Cloud Application Management Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_3

instances exceeds a defined threshold. In this rule-based scaling environments, the

implementation of an elasticity manager as a custom management component may,

however, still be feasible to supervise the rule-based scaling and change the rules

according to additional heuristics from past experiences or based on user input etc.

5.2 Management Components 253

5.2.4 Elastic Load Balancer

The number of synchronous accesses to an elastically scaled-out application

is used to determine the number of required application component instances.

How can the number of required application component instances be
determined based on monitored synchronous accesses?

Context

Application components of a distributed application (160) shall be scaled out

automatically. They are, therefore, instantiated multiple times to handle the cur-

rently experienced workload. A tight alignment of the provisioned component

instances to this workload is especially effective if the application experiences

periodic workload (29), unpredictable workload (36), or continuously changing
workload (40). The required flexibly provisioning of application components is

enabled by an elastic infrastructure (87) or elastic platform (91). Moreover, the

pay-per-use pricing models of these environments are exploited best if cloud

resources are provisioned and decommissioned timely while manual scaling

approaches are less suitable. Therefore, requests sent to an application shall be

used as an indicator for the currently experienced workload from which the required

number of components instances shall be deducted.

Solution

An elastic load balancer is a management component that is provided with informa-

tion from a load balancer that spreads out synchronous requests from human users or

other application components among multiple component instances. Based on the

number of distributed requests and possibly other utilization information, the required

number of required component instances is determined. When determined, the neces-

sary provisioning or decommissioning operations to reflect this number in the appli-

cation are executed. The elastic load balancer invokes these operations provided by

the interface of the elastic infrastructure or the elastic platform.

Result

As seen in Fig. 5.7, a load balancer distributes requests of human users and other

application components among a set of application component instances hosted on

254 5 Cloud Application Management Patterns

an elastic platform (91) or an elastic infrastructure (87). Information about the

number of these requests and utilization information of the individual component

instances are provided to the elastic load balancer management component. This

component uses the monitored information and employs heuristics about the

capabilities of application component instances, for example, how many concurrent

requests one component instance can handle to determine the number of required

instances. These heuristics are a crucial design parameter, since they significantly

affect how efficient the application is scaled. Heuristics should, therefore, also be

monitored, evaluated, and possibly adjusted during runtime. The elastic load
balancer can, for example, observe execution times required by the application

components to handle requests. Information about the time it takes to provision new

applications instances is also necessary to make efficient scaling decisions. Once

the required component instance numbers have been determined, they are reflected

by initiating the corresponding provision operations and decommission operations.

Further Reading: capacity planning techniques to estimate

the number of requests that an application component can

handle are described in more detail byMenasce and Almeida

[196]. Allspaw [23] also incorporates how heuristics about

user behavior, i.e., a higher demand during Christmas, may be

incorporated in scaling decisions.

Related Patterns

The elastic load balancer is used for requests that are synchronous and, thus, are

handled immediately. If the application, or some of the application components,

Request

Number of
Requests

Elas�c
Infrastructure

Elas�c
Pla�orm

Monitoring

Resource
Management

U�liza�on

Number of
Components

Elas�c
Load Balancer

Load
Balancer

Fig. 5.7 Elastic load balancer interacting with an elastic platform or elastic infrastructure

5.2 Management Components 255

handle asynchronous requests, delaying requests to actively influence the workload

may be more effective than processing them immediately. This is especially the

case in less elastic environments, i.e., environments supporting a smaller maximum

number of application component instances or if the resource costs of the elastic
infrastructure differ over time. Such asynchronous scenarios in which workload

can be delayed are handled more effectively using an elastic queue (257). The batch
processing component (185) also describes this delay of workload. The elastic load
balancer is, furthermore, likely to be combined with the following patterns:

• Stateless component (171): the elastic load balancer is most efficient if the

scaled out application components are implemented as stateless components.
This significantly eases their addition and removal from the application during

the provisioning and decommissioning operations.

• Watchdog (260): if application component instances do not guarantee the

required availability, they can be monitored by a watchdog to be replaced in

case of failures. During this replacement, the watchdog has to interact with the
elastic load balancer to inform this component about the newly provisioned

application component instances that shall be assigned requests to. Similarly,

components that have failed should not be assigned any workload.

• Provider adapter (243): the functionality provided by the elastic load balancer
to handle elastic scaling may be similarly applicable to multiple cloud providers.

In this case, a provider adapter (243) may be used to encapsulate the function-

ality accessing a provider interface from the rest of the elastic load balancer
implementation making it easier to reuse.

Known Uses

Amazon offers an elastic load balancer for application components running on its

elastic infrastructure (87), called Elastic Compute Cloud (EC2) [18], and its

elastic platform, called Elastic Beanstalk [53]. In both cases, resources are scaled

based on the number of accesses as well as the load of virtual servers on which

application components are hosted. Customers may specify rules for Amazon’s

Auto Scaling [194], i.e., to describe how many component instances shall be

deployed for a certain number of requests. Even though this means that a signifi-

cant amount of functionality described by the elastic load balancer pattern is

provided by Amazon, the customer should still monitor the application to adjust

the heuristics that were considered during the creation of these scaling rules.

Especially, to reflect heuristics about user behavior, rules should be adjusted

periodically. In case of Windows Azure, a so called traffic manager distributes

requests among application components [197]. This Traffic Manager and the

application components called Web Roles provide interfaces through which and

elastic load balancer implementation may obtain the information necessary to

make scaling decisions.

256 5 Cloud Application Management Patterns

5.2.5 Elastic Queue

The number of asynchronous accesses via messaging to an elastically scaled-

out application is used to adjust the number of required application compo-

nent instances.

How can the number of required application component instances
be adjusted based on monitored asynchronous accesses?

Context

A distributed application (160) is comprised of multiple application components

that are deployed to an elastic infrastructure (87) or an elastic platform (91). To

benefit from the dynamicity of these runtime environments, the number of applica-

tion component instances shall be scaled-out and adjusted to the currently experi-

enced workload. Especially, if a pay-per-use pricing model is used by the elastic
platform or elastic infrastructure, the reactiveness of the scaling operations directly
affects running costs of the application. In scope of workloads that require different

number of resources frequently, manual scaling approaches are less optimal. This is

the case for periodic workload (29), unpredictable workload (36), and continuously
changing workload (40). Therefore, the required provisioning and

decommissioning operations should be performed in an automated fashion.

Another property of an application that poses an opportunity for scaling optimiza-

tion is the handling of asynchronous requests. In this scope, additional optimization

of the workload execution can be performed by delaying some of the requests to

process them when it is most feasible as described by the batch processing
component (185) pattern in greater detail. For example, such delayed processing

can be advantageous, if resource costs fluctuate or the elasticity of the environment

is limited, for example, in a small private cloud (66). In the former case, workload

should be delayed until processing is beneficial due to cheap resource costs. In the

latter case, non-business-critical or non-time-critical workload can be moved to

times when resources of the small private cloud (66) are less utilized.

Solution

An elastic queue monitors queues provided by a message-oriented middleware
(136) used to distribute asynchronous requests among multiple application

5.2 Management Components 257

components instances. It adjusts the number of application component instances

handling these requests via provisioning and decommissioning operations. These

operations are provided by the management interfaces of the elastic infrastructure
(87) or elastic platform (91). The number of required component instances is

determined from the number and type of messages contained in the monitored

queue, utilization information of the scaled application component, and environ-

mental information about the elastic infrastructure or elastic platform. If the

application components are implemented as a batch processing component, the
handling of messages may additionally be delayed to wait for optimal processing

conditions.

Result

As depicted in Fig. 5.8, all requests to the scaled-out applications components are

stored in a message queue. The application components retrieve messages from this

queue for processing. Information is collected about the number of messages

contained in this queue at a given time and passed to an elastic queue management

component. The elastic queue may use defined thresholds regarding the number of

queued messages to determine if more or fewer component instances are required.

The elastic queue can, furthermore, respect environmental information, such as the

overall utilization of the cloud or resource prices. For example, when the overall

utilization is high, the elastic queue may be used to delay less important messages

and to prioritize business-critical ones by reducing the number of handling applica-

tion component instances respectively. Also, the less important messages can be

delayed, if resources prices are too high to process them at acceptable costs. The

importance of messages can be modeled as an attached state that is set by the

application component initializing the request. For example, message could be

characterized as “informational”, “critical”, “status event” etc. Numbers may also

be used to indicate the importance of a message. For example, the Java Message

Service (JMS) [145, 146] standardizes a JMSPriority field that may be used in every

message to define priority values ranging from “0” – lowest priority – to “9” –

highest priority. The elastic queue may be configured with thresholds for each

message type to deduct provisioning and decommissioning of application compo-

nent instances.

If an elastic infrastructure (87) is used, application components are hosted by

virtual servers deployed on the elastic infrastructure. If an elastic platform (91) is

used, scaling a deployed application component is possibly handled completely

by the platform. In this case, the elastic queue only determines the times when

processing components are active and inactive and not how many to provision.

However, the automatic scaling functionality of platforms is commonly

configured by customers. Therefore, even when relying on such provider-supplied

scaling automation, a customer should monitor the application behavior and could

use an elastic queue to adjust the configuration of the provider functionality.

258 5 Cloud Application Management Patterns

Related Patterns
• Stateless component (171): implementing the components handled by the elastic

queue in a stateless fashion significantly eases the scaling tasks as components may

be provisioned and decommissioned without considering data handled by them.

• Watchdog (260): if the used elastic infrastructure (87) or elastic platform (91)

assures environment-based availability (98) or a low node-based availability
(95), a watchdog can supervise to application components scaled by the elastic
queue for failures to replace failing ones automatically. The elastic queue and

the watchdog may even be summarized in one component.

• Provider adapter (243): as message queues are offered by different cloud

providers, an implementation of the elastic queue pattern may be applicable for

different providers. In this case, a provider adapter (243) may be used to separate

the functionality of elastic scaling from functions accessing provider interfaces.

Known Uses

Amazon provides a messaging service, the Simple Queue Service (SQS) [38]. It

may be monitored by Amazon’s monitoring service, CloudWatch [198]. Especially,

with respect to the size of the elastic queue, rules may be defined to provision or

decommission application components hosted on virtual servers based on the

number of messages present in the queue.

Fig. 5.8 Elastic queue interacting with an elastic platform or an elastic infrastructure

5.2 Management Components 259

5.2.6 Watchdog

Applications cope with failures automatically bymonitoring and replacing appli-

cation component instances if the provider-assured availability is insufficient.

How can applications automatically detect failing application
components and handle their replacement?

Context

Many distributed applications (160) deploy their application components on elastic
infrastructures (87) and elastic platforms (91), which assure environment-based
availability (98), thus, availability is assured for the environment itself, i.e., regard-

ing the ability of the customer to provision new application components. If a

provider assures node-based availability (95), i.e., the availability for each hosted

application component instance the whole application may have to display a higher

availability than the provider assures. Furthermore, if a distributed application is

comprised of many application components it is dependent on the availability of all

component instances. To enable high availability under such conditions,

applications have to rely on redundant application component instances and the

failure of these instances has to be detected and coped with automatically.

Solution

Individual application components rely on external state information by

implementing the stateless component (171) pattern. Components are scaled out

and multiple instances of them are deployed to redundant resources. In scope of an

elastic infrastructure (87), these resources are usually virtual servers hosting

application components. In case of elastic platforms (91), the application compo-

nent itself is deployed multiple times to the same or different elastic platforms (91).
Highly available communication between these components is assured, for example

using a message-oriented middleware (136). Components are monitored by a

watchdog component and replaced in case of failures.

260 5 Cloud Application Management Patterns

Result

Multiple instances of application components are deployed. Either these application

components are hosted on an elastic infrastructure (87) or an elastic platform (91).

Application component instances are accessed synchronously through a load bal-

ancer or asynchronously using message queues provided by a message-oriented
middleware (136) as shown in Fig. 5.9. This communication offering guarantees

that messages are delivered successfully as described by the at-least-once delivery
(144) pattern and exactly-once delivery (141) pattern. The application components

are implemented as stateless components (171) and, therefore, rely on state infor-

mation contained by the messages, the synchronous requests, or in storage offerings

provided by the elastic infrastructure or elastic platform. Refer to Page 6 in

Sect. 1.2 and the stateless component (171) pattern for a detailed discussion of our

notion of state: session state – the state of interactions with a component and

application state – the data handled by a component. Keeping state externally ensures

that no data is lost in case of application component failures and that replacements

may be provisioned more easily. The watchdog can monitor these components for

failures using three information sources. First, application components can send

periodic heartbeats to notify proper functioning. Second, the watchdog may rely on

monitoring information provided by the elastic platform or elastic infrastructure, for
example, regarding the network connectivity of components, their memory use etc.

Third, the watchdog can send test requests and test messages to the application

components and can compare the results of these requests to expected results.

Hohpe and Woolf [1] describe patterns to supervise message processing: a control
bus can provide dedicated message queues for heartbeat messages; test messages are
used to ensure correct processing; a wire tap may be used to analyze messages

processed by the application.

Fig. 5.9 Watchdog supervising application components hosted on IaaS and PaaS

5.2 Management Components 261

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

As the watchdog shall ensure high availability, it must be implemented highly

available itself. One approach depicted in Fig. 5.9, is to use multiple instances of the

watchdog supervising each other that are hosted on the elastic platform (91) or

elastic infrastructure (87) just like other application components. To coordinate the

operation of these watchdogs amanaged configuration (247) to provide information

to all watchdog instances about the number of the components to be monitored, the

status of these components, performed provisioning and decommissioning

operations etc.

Variations

The watchdog can randomly treat long running application component instances as

failed and replace them. This approach can be chosen if application component

implementations were never tested for long term execution. Since the transition

between failed and replaced application component instances takes place seam-

lessly, there is no need to keep long running instances anymore.

Related Patterns
• Elasticity manager (250), elastic load balancer (254), and elastic queue (257):

the watchdog supervises application component instances and replaces failing

ones. If these components are also scaled out, thus, if multiple component

instances are provisioned to handle workload, the watchdog has to be coordi-

nated with elasticity patterns. If new instances are provisioned or

decommissioned as workload changes, the watchdog needs to be notified to

supervise more or less application component instances, respectively. Due to

these interdependencies, elasticity management and watchdog functionality are

often subsumed into one component.

• Transaction-based processor (201): if the message-oriented middleware (136)

provides transaction-based delivery (146), messages can be read from a queue

under transactional context. In this case, the processing component has to

implement the transaction-based processor (201) pattern to assure that messages

are not lost in case the component fails during message retrieval or message

processing. The component, therefore, performs operations to read from the

input queue, process the message within the scope of one transaction. This

transaction assures that if a component instance fails during one of these

operations, none of the operations are successful. Especially, the processed

message is not deleted from the input queue, but can be retrieved again from

an operation application component. The transaction-based processor (201)

pattern also describes this style of interaction with storage offerings to assure

that data is retrieved and processed successfully. The transaction-based proces-
sor pattern also describes this style of interaction with storage offerings. It may,

therefore, be implemented by the application components if state information is

262 5 Cloud Application Management Patterns

kept in storage offerings. This assures that data processed by the application is

not lost if components fail.

• Timeout-based message processor (204): as an alternative to the transaction-
based processor (201) pattern, application components can implement the

timeout-based message processor (204) pattern. Thus, they send an acknowl-

edgement to the input queue that they have successfully retrieved and processed

a message. This requires that the message-oriented middleware (136) provides

timeout-based delivery (149). If the acknowledgement is not received by the

message queue in a specified time frame, the message is put back on the queue to

be processed by a different application component instance. Following this

approach, late receives of acknowledgement messages can result in duplicate

messages, which can be detected by an idempotent processor (197).
• Idempotent processor (197): if the messaging system used by a watchdog displays

at-least-once delivery (144) behavior, the application components supervised by

the watchdog can be implemented as idempotent processors (197) to cope with

message duplicates. If application components exchange data using a storage

offering, the idempotent processor may also be useful to deal with data

inconsistencies, if the storage offering displays eventual consistency (126).

Known Uses

Companies such as RightScale [192] and Scalr [193] implemented watchdog function-
ality on top of Amazon EC2 [18], but similar functionality is also made available by

Amazon itself, called Amazon CloudWatch [198]. Application developers may have to

implement some application-level failure detection in addition to these provider-

supplied services. The watchdog pattern is also described by Douglass [199] and

Hanmer [4]. How the redundancy used by this pattern affects the overall availability

of a so-called hot pool ofmonitored processes is described by Leymann and Roller [76].

5.2 Management Components 263

5.3 Management Processes

The following management process patterns describe how distributed and

componentized cloud applications may address runtime challenges, such as elasticity

and failure handling in an automated fashion. The automation of management tasks is

required to increase the beneficial effects of some cloud properties discussed in

Sect. 1.1 on Page 3: elasticity – resources may be provisioned and decommissioned

quickly and on-demand; pay-per-use – only the actually used resources result in costs
for the cloud customer; and homogenization – the (re)use of available cloud offerings
and infrastructure platforms homogenizes the environment in which cloud

applications are hosted. This homogenization reduces costs because of reduced

complexity of the overall environment [7, 8] resulting from a reduced number of

middleware, storage options etc. In this scope, the automation of cloud application

management leads to a better exploitation of pay-per-use billing, because unused

resources are freed without any human interaction. Thus, the number of resources is

efficiently aligned with the experienced workload. Furthermore, homogenization of

the environment should also be extended to the management of cloud resources to

allow the reuse of management processes in different application contexts. If the

cloud application shall itself be offered as a service, automation of management

processes is fundamental to enable self-service interfaces. Only if the management

processes of an application are executed automatically, customers may sign-up

independently. If human tasks are required for this purpose, the application may be

hindered to handle new users or changing demand of users efficiently.

These management process patterns describe the management tasks and

challenges addressed by them. They specify an abstract management process

expressed in the Business Process Model and Notation (BPMN) [159] language.

These management processes provide a template for the implementation of an

automated management process in a concrete application runtime environment.

The following BPMN modeling elements are used in this section:

Start Events

None Message Timer

The none start event indicates the start of a
process without giving any specific

condition or event. A message start event
indicates that a message is received to start

the process. A timer triggers a process
periodically or at a given time.

Intermediate Events

Message Timer

During the process execution,

intermediate events are used to wait

for a certain message to be received

or to delay a process until a timer runs
out.

Exclusive Event-based Gateway This instantiating exclusive event-based
gateway is used to connect multiple

intermediate events. We use it to start a

process as soon as one of these events is

observed.

(continued)

264 5 Cloud Application Management Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

End Event The empty end event indicates when
the process ends. When all active

sequence flows reach this state, the

process is completed and, thus, no

longer active.

Activity

Activity
Activity

(Multiple Instance)

A process contains multiple activities that
handle the management tasks. Multiple
instances of activities may be executed to

handle the same tasks multiple times in

parallel.

Sequence Flow Activities are interconnected using

sequence flow arrows. When an activity is

completed the sequence flow points to

activities to be executed or the gateways to

be evaluated next.

Sub-process

Sub-process

Activity

A sub-process is an activity whose

internals are modeled using other

activities, events etc. Especially, sub-

processes may have events attached to its

boundary that stop the sub-processes if

observed.

Collapsed Sub-process

Collapsed
Sub-process

A collapsed sub-process hides the
internals of a more complex activity

implementation. We use it in

diagrams to indicate that an activity has

to be refined additionally to a usage

scenario.

Exclusive Gateway: Decision

Condition

Only one of the sequence flows leaving an

exclusive gateway becomes active based

on associated conditions. A slash marker

indicates the default sequence flow to

follow, if none of the other conditions is

true.

Exclusive Gateway: Merge One of the sequence flows entering the

exclusive merge must be active for the

leaving sequence flow to be triggered. We

always use this element in combination

with an exclusive decision.

(continued)

5.3 Management Processes 265

Parallel Gateway: Fork When the sequence flow entering a

parallel fork becomes active, all outgoing

sequence flows are triggered. Unlike

the exclusive gateway, there are no
conditions.

Parallel Gateway: Join All of the sequence flows entering a

parallel join must be active for the

outgoing sequence flow to be triggered.

We always use this element in

combination with a parallel fork.

Data Store

Data Store

Activities may write to data stores or read
from them as indicated by the dotted

arrows. We use this element for data

generated by activities to be used by other

activities (possibly across process

boundaries).

Message Flow

content

Activities may send and receive messages.

In this case, they are connected with a

message flow. An attached message
graphic and content description is

optional.

Pools and Lanes

Participant

Lane Lane

Pools are used to describe participants in a
process. We used this element to model

the components of the abstract

management architecture introduced in

Sect. 5.1. Activities executed by a

participant are contained in lanes.
Commonly, we only used one lane per

participant in a process.

Description

description

Descriptions can be annotated to arbitrary

elements for further information.

266 5 Cloud Application Management Patterns

5.3.1 Elasticity Management Process

Application component instances are added automatically to an application to

cope with increasing workload. If the workload decreases application com-

ponent instances are removed respectively.

How can the number of resources to which application components
are scaled-out be adjusted efficiently to the currently experienced
workload and anticipated future workload?

Context

A distributed application (160) is hosted on an elastic infrastructure (87) or elastic
platform (91). This application uses elasticity managers (250), elastic queues (257),
or elastic load balancers (254) to ensure an elastic scaling of application

components for an efficient utilization of cloud resources. This is especially impor-

tant if the cloud employs pay-per-use billing and the application experiences

periodic workload (29), unpredictable workload (36), or continuously changing
workload (40). To handle this task adequately, the current resource demand has to

be obtained automatically from the application and has to be reflected in provision-

ing and decommissioning of cloud resources.

Solution

An elasticity management process analyzes the utilization of application compo-

nent instances in intervals, when a system manager requests it, or if certain

conditions are observed by the monitoring component. Based on this information,

the current workload of the application is computed and reflected by adjusting the

assigned resource numbers accordingly.

Result

The elasticity management process can be triggered by a condition observed by the
monitoring component or periodically as depicted by the message event and timer

event in Fig. 5.10, respectively. Alternatively, the message can also be issued by a

human system administrator, for example, because he or she knows that a number

of new employees will start using the application at a certain date. This alternative

5.3 Management Processes 267

is omitted from the elasticity management process depicted in Fig. 5.10 for space

reasons. As further alternatives, the process can be triggered by a message

originating from the monitoring functionality implemented by the elasticity

Fig. 5.10 Elasticity management flow

268 5 Cloud Application Management Patterns

manager, elastic load balancer, or elastic queue. For example, the size of a queue

may exceed a certain threshold triggering the elasticity management process from
an elastic queue (257). After it has been triggered, the elasticity management
process checks if elasticity management is already currently handled. If so, it

terminates. This check assures that multiple events generated by the monitoring

component are given enough time to be handled by the active elasticity manage-
ment processes. After this check, additional information may be retrieved and the

number of required component instances is computed. Afterwards, the provisioning

or decommissioning of instances is initiated followed by a pause to give these

instances time to start up or shut down, respectively.

The elasticity management process optimizes application component utilization

and adjusts component instance numbers to correctly reflect the experienced work-

load. The first critical design decision in this scope is the time interval at which system

utilization is evaluated in case of time-based triggers. If this interval is too large, the

system may be underutilized or overloaded without notice. If the interval is too short,

the system may not be given enough time to react to the resource number adjustments.

The second critical design decision for this pattern is to ensure adequate reactions to

the performed workload analysis. If too few application component instances are

added when a workload increase is observed the performance of the application

may still be insufficient. If too many resources are added at once, the application

will not be utilized optimally. Both design decisions mainly depend on heuristics and

prior experiences. When determining the time interval at which utilization is

measured, it has to be considered how quickly utilization has changed in the past or

the workload behavior may be compared to previously experienced workloads. Also,

the time required to provision new resources has to be respected here. Historic

information, such as user behavior during holidays may be used to adjust these

variables as described by Allspaw [23].

Variations

Manual triggering of the elasticity management process may not only originate

from cloud customer and their system administrators. Who is responsible for this

task mainly depends on the employed cloud service model. In case of IaaS (45), the
customer of the cloud likely performs this task. However, in case of PaaS (49) and

SaaS (55), the elasticity management process may be hidden from the customer. In

this case, the task instead may be performed by the cloud provider. The elasticity
management process may also be offered by a provider different than the used

cloud provider.

Autonomic computing described, for example, by Murch [200] also realizes

functionality of an elasticity management process. It assumes the existence of an

autonomic manager that takes care about an application’s self-management, i.e.,

self-configuration to optimize behavior properties or in case certain failures occur.

This autonomic manager may also handle elasticity. This can be completely outside

of the application and may be invisible to the application itself.

5.3 Management Processes 269

Related Patterns
• Elasticity manager (250), elastic queue (257), and elastic load balancer (254):

these three patterns form the basis for the elasticity management process that can
be implemented by them.

• Elastic infrastructure (87) and elastic platform (91): these two cloud

environments provide the required monitoring information used by the elasticity
management process to determine scaling decisions.

• Stateless component (171): components managed by the elasticity management
process should keep their state externally, for example, in storage offerings (see

Sect. 3.5 on Page 109) as described by this pattern.

Known Uses

The elasticity management process has originally been introduced by us in [25].

Varia [93, 154] describes how to scale Amazon AWS Resources. Especially, the

different events and conditions are covered when elasticity management should be

executed. Hill et al. [201] evaluate the scaling capabilities of Windows Azure, for

which ParaleapTechnologies [202] offers a scaling software as a Service.

RightScale [192] and Scalr [193] offer a similar service for Amazon EC2 [18].

The concept to scale out applications automatically is, however, not only seen in

cloud computing and has been used by the IT industry for quite some time. Self-

adaptive autonomous systems perform a similar management task to adjust their

size, structure, communication channels etc. to react to environmental conditions.

They undergo a so-called MAPE loop [127] comprised of similar steps as the

elasticity management process contains.

270 5 Cloud Application Management Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_3

5.3.2 Feature Flag Management Process

If the cloud cannot provide required resources in time, the features provided

by application components are degraded gracefully to replace or disable

unimportant ones in order to keep vital features operational.

How can the performance of an application degrade gracefully, if the
experienced workload increases but additional cloud resources are
unavailable or take too long to provision?

Context

A distributed application (160) resides in an elastic cloud and experiences

varying workload, i.e., periodic workload (29), unpredictable workload (36),

or continuously changing workload (40). While the elasticity of clouds gener-

ally allows a tight alignment of resource numbers to the current workload

experienced by the application, the time it takes to provision new resources

remains as a limiting factor. If the workload increases too drastically, it may

take too long to provision new cloud resources to handle it. Especially, since

many cloud providers do not guarantee a specific provisioning time of new

cloud resources or even for the availability of this function, cloud applications

have to be able to cope with increasing demand if new resources do not

become available.

Solution

Less important application functionality provided by application component

instances is disabled or replaced with a less demanding implementation, if the

cloud provider cannot fulfill current workload demands. When resources can

eventually be provisioned again, the application components return to normal

operation. While the feature flag management process degrades application

functionality, the regular elasticity management process (267) is disabled to

avoid unnecessary provisioning requests. Also, the utilization information on

which elasticity managers (250), elastic load balancers (254), or elastic
queues (257) base their decision to provision or decommission application

component instances may be obfuscated. A degraded application component

instance may seem less utilized as it executes less demanding replacement

functionality.

5.3 Management Processes 271

Result

Less important functions (features) of the application degrade first if a shortage

of resources is experienced. This shortage is detected in a provider adapter (243)
encapsulating the provider’s resource management interface, for example, when

it receives an error from encapsulated provisioning interfaces. If this condition

occurs, it triggers the feature flag management process, commonly executed by

an elasticity manager (250), elastic load balancer (254), or elastic queue (257),
as depicted in Fig. 5.11. After notification from the provider adapter, the feature
flag management process degrades application functionality in a separate sub-

process. This sub-process is immediately stopped if the provider adapter notifies

that resources may be provisioned again. This is indicated by the boundary

message event on the sub-process in Fig. 5.11. As mentioned above, during the

degradation, the feature flag management process deactivates elasticity manage-

ment. To degrade application component functionality, features are identified

and their state, for example, “active”, “limited”, “inactive” may be specified via

flags in the configuration of application components. This enables the feature flag
management process to reduce or completely avoid load from these functions in

case new resources cannot be provisioned at desired speed. After each degrada-

tion, the management process waits for an impact in and then checks the

application performance. The performance check involves multiple requests to

application components and the monitoring component, thus, it is depicted as a

collapsed sub-process in Fig. 5.11.

The degradation is continued, i.e., going from “active” to “limited” to “inac-

tive”, until the performance is acceptable. Note that this does not always have to be

the case, but the feature flag degradation of functionality can by design not be

performed indefinitely.After the ability to provision new resources is re-obtained

and notified by the provider adapter, application component instances are

upgraded to their regular functionality and the regular elasticity management
process (267) is reactivated.

As an example for a feature flag management process, consider the forum of a

web site that may experience a significant workload increase. Therefore, the

elasticity management requests the provisioning of new resources. Since these

resources do not become available within an acceptable time-frame, the load

resulting from the forum’s search function shall be reduced. Therefore, instead of

considering all entries in the forum during a search, only cached entries from earlier

search queries are considered, thus, reducing the computing power required by the

application component providing the search function. Other functionality, such as

news tickers, tagging functions etc. may be turned off completely to reduce the

overall load. A challenge arising in this scope is that the approach is only success-

ful, if degraded application components share a common underlying infrastructure

with vital application components. The distribution of application components

among cloud resources, described in detail by the distributed application (160)

pattern, is, therefore, a fundamental design issue.

272 5 Cloud Application Management Patterns

Fig. 5.11 Feature flags management process

5.3 Management Processes 273

Variations

In a similar fashion as functions are degraded, when resources are unavailable,

certain functions may also only be enabled, when there are superfluous resources.

These may, for example, be indexing tasks of relational databases (115) or other
maintenance issues improving the application’s performance during times of higher

workloads. This approach is especially powerful in private clouds (66), where

maximal resources numbers may be limited. In public clouds (62), varying prices

may motivate this kind of application management.

Another variation of the feature flag management process may be used during

the provisioning of application component instances to reduce provisioning

times. If application components provide complex functionality they may need

a long time to start up. Therefore, the functionality that is available and its

capabilities may be reduced right after startup of an application component.

During runtime more complex functions are then enabled. This approach to

startup additional functionality after core functions are active is also referred to

as lazy loading.

Related Patterns
• Managed configuration (247): to set application components’ feature flags, their

configuration may be stored centrally as described by the managed configuration
pattern. From a central storage offering it may then be pulled from application

components periodically or pushed to them using messages in case of configu-

ration changes. In scope of feature flag management, pushing configuration

changes may be more effective as resources provisioning shortages happen

seldom and pushing ensures a timely reaction of application components if

feature flags change.

• Multi-component image (206): the challenge to find an adequate distribution of

vital and non-vital application components among cloud resources may be

simplified if not all components sharing a cloud resource are active at all

times. This concept is described by the multi-component image pattern.
• Standby pooling process (279): application component instances may be kept on

standby to increase the speed of provisioning tasks and to optimize the utiliza-

tion of pay-per-use billing slots.

Known Uses

Hull [203] describes how feature flags should be used in internet applications

handling large amounts of users. The use of an elastic infrastructure (87) or elastic
platform (91) is not considered explicitly by Hull, but Hoff [204] shows that even in

such an elastic environment provisioning functionality may be unavailable or less

responsive during times of high demand.

274 5 Cloud Application Management Patterns

5.3.3 Update Transition Process

When a new application component version, middleware versions etc.

become available, running application components are updated seamlessly.

How can application components of a distributed application be
updated seamlessly?

Context

During the runtime of a distributed application (160), new versions of used

middleware, operating systems, or application components may become available.

If the application has to ensure high availability, the elasticity of an underlying

elastic infrastructure (87) or elastic platform (91) should be employed to enable a

seamless switch from the old to the new version of application components. During

this update process to a new version of a component, the transition time shall,

therefore, be minimized to avoid a downtime of individual application components

and of the overall application. Updating a running component may be too error-

prone in this scope. Additionally, aside from updating running application

components, it also has to be ensured that after a distinct point in time new

component versions are provisioned in scope of automated elasticity and resiliency

handling tasks.

Solution

The new component version is created and stored as a new virtual server image or

component image in the elastic infrastructure (87) or elastic platform (91). Based

on this image, a system administrator triggers the update transition process com-

monly implemented as part of an elasticity manager (250), elastic load balancer
(254), or elastic queue (257). Additional application component instances of the

new version are provisioned. These components are executed simultaneously with

the application components of the old version. If necessary, load balancing is then

switched to the component instances of the new version. If the application

components access a queue, this step is unnecessary. Finally, the old application

component instances are decommissioned. During this transition, problems may

arise if components of different versions are incompatible, for example, because

their interfaces and the used data structure or if their functionality differs too much.

5.3 Management Processes 275

These conditions may prevent both versions to be active simultaneously. Having

provisioned two versions at the same time may still be beneficial as it leaves more

flexibility. For example, if an error occurs during the switch having the old

component version still running may provide a fallback option.

Result

Due to the ability of the elastic infrastructure (87) or elastic platform (91) to

dynamically start additional application component instances, no running applica-

tion component instances are updated by the update transition process depicted in

Fig. 5.12. Instead, new versions are created and tested independently by system

administrators and developers, or automatically via an automated testing procedure

as part of a DevOps [205] scenario. Thus, new virtual server images are created for

an elastic infrastructure and new component images are created for an elastic
platform. Then, the update transition process is triggered. It starts by provisioning

the new application components additionally to the old ones. Load balancing

functionality may have to be adjusted after this as an elastic load balancers (254)
actively assign requests to provisioned component instances and, thus, have to be

reconfigured for the switch. Elastic queues (257) do not assign requests to

components, as components retrieve messages from queues independently. After

load balancers have been reconfigured, application components of the old version

are decommissioned. This switchover guarantees a graceful transition between the

new version and the old version of application components.

This graceful transition, however, requires the versions of application

components to be compatible, i.e., regarding their data structure, data serialization

format, interfaces, or interaction protocol. Additional challenges may arise due to

incompatibilities of the application component versions. If different versions must

not handle requests simultaneously, the transition must be executed instantly. Load

balancers have to switch between components at a distinct point in time respec-

tively. In case of an elastic queue (257), there are two approaches. First, application
components can be decommissioned and then the new ones are provisioned. During

the timeframe when no components are active, the message queue serves as a buffer

for requests. Second, an immediate switch is realized by sharing a managed
configuration (247) between all application component instances that is kept in a

storage offering, commonly, a relational database (115), key-value storage (119),
or blob storage (112). In this managed configuration (247), it is stated whether

application components should start or stop processing requests. A managed con-
figuration can, therefore, help to activate and deactivate large numbers of applica-

tion components simultaneously without a significant impact of the time it takes the

elastic infrastructure (87) or elastic platform (91) to provision or decommission

them.

In either case, limitations of the runtime environment used may still result in a

small downtime of the application during the immediate switchover between

276 5 Cloud Application Management Patterns

application versions. Assurances made by providers should be considered when

selecting one for hosting an application.

Variations

If the components are monitored by a watchdog (260) handling the resiliency
management process (283), the watchdog hay have to be notified after the provi-

sioning task and prior to the decommissioning tasks depicted in Fig. 5.12. This

ensures that the watchdog starts monitoring provisioned component instances and

stops monitoring if component instances are decommissioned. Otherwise, the

watchdog could mistake these operations for failures.

Fig. 5.12 Update transition process for application components accessed through load balancers

and queues

5.3 Management Processes 277

Related Patterns
• Stateless component (171): the complexity of the transition process is reduced

drastically, if no state information has to be extracted from old component

versions and inserted into new component versions. Also, a possible data

synchronization during the time when both versions are active is rendered

unnecessary.

• Loose coupling (156): the dependencies between update components and other

application components communicating with them should be kept to a mini-

mum, as described by the loose coupling pattern. Especially, if the new

component version uses a different data structure or serialization format, the

necessary format transformations should be hidden from other communication

partners.

• Managed configuration (247): as mentioned above, this pattern describes how a

large number of application components may be configured from a central

location.

Known Uses

An update transition process has to be implemented separately for every applica-

tion to respect the individual order in which application components have to be

updated. Windows Azure [52] supports transition functionality between a staging

and a productive version of compute nodes.

278 5 Cloud Application Management Patterns

5.3.4 Standby Pooling Process

Application component instances should be kept on standby to increase

provisioning speed and utilize billing time-slots efficiently.

ZZZ How can defined provisioning times for application component
instances be ensured while utilizing pay-per-use resources in an
optimal fashion?

Context

Even though application component instances may be provisioned and

decommissioned dynamically, it usually requires some time to actually provision

and decommission them. If a cloud application, however, experiences drastic and

quick workload changes, these provisioning times may limit its capability to obtain

the required resources quickly enough. Decommissioning of component instances

immediately when no longer needed may also be ineffective, if cloud resources are

charged for fixed time-slots. To reduce costs in this scope, provisioned component

instances should be decommissioned when they are no longer needed with respect

to the amount of time they have been paid for. For example, if a cloud provider

charges for every hour that a resource is provisioned, decommissioning it after

30 min results in the same cost as if it was active for a full hour. Decommissioning

the resource after 30 min may be inefficient, if it turns out to be required again after

45 min.

Solution

Instead of decommissioning application component instances instantly when they

are unused, they are assigned to a standby list by the standby pooling process.
They are decommissioned only when the time-slot they have been paid for has

been utilized and they are still not needed. Additionally, the standby list may

always contain a certain number of component instances to ensure timely

provisioning.

5.3 Management Processes 279

Result

As depicted in Fig. 5.13, the standby pooling process uses the provider adapter
(243) pattern. This pattern describes that provider interfaces should be wrapped by

a separate component that can provide more abstract functionality to other applica-

tion components. It also encapsulates functionality to deal with authentication and

provider-specific access protocols. In scope of the standby pooling process, the
provider adapter is accessed to initiate the provisioning and decommissioning of

application component instances. If an elastic infrastructure (87) is used, this would
be functionality to start and stop virtual servers. If an elastic platform (91) is used,

application component instances are likely to be deployed directly. When accessed,

the provider adapter triggers two standby pooling processes handing provisioning

and decommissioning of application components depicted in Figs. 5.13 and 5.14.

Whenever a component instance is decommissioned as shown in Fig. 5.13, the

Fig. 5.13 Decommissioning executed by the standby pooling process and interacting components

280 5 Cloud Application Management Patterns

standby pooling process obtains payment information about this component and

assigns it to a standby list. This standby list is a central data store and shared

between the decommissioning process and provisioning process. The

decommissioning process waits for the payment period to be over and then checks

if the component instance has been reactivated in the meantime. If not, the instance

is decommissioned. The reactivation of application component instances in the

standby list is handled by the provisioning process seen in Fig. 5.14. When it is

notified by the provider adapter that a new component instance is required, it first

checks for a suitable component in the standby list. If no suitable component

instance is on standby, a new instance is provisioned. If a suitable instance is in

the standby list, the standby pooling process removes it from the list. In either case,

the standby pooling process reconfigures a load balancer assigning requests to the

component or configures the component to accesses a queue.

Component instances in the standby list are decommissioned at the last

possible moment. Until then, they may be put to work again quickly. This

reduces the number of provisioning and decommissioning operations and, there-

fore, results in a more efficient and economic use of cloud resources. Also, the

Fig. 5.14 Provisioning executed by the standby pooling process and interacting components

5.3 Management Processes 281

application is less vulnerable, if the cloud is unable to provide new component

instances in time if a certain number of component instances is kept on standby at

all times.

Variations

In a private cloud (66), the standby pooling process may be beneficial, because

provisioning times may still be too long for certain workload changes. However, in

this environment the standby pooling process may have to use a different

decommissioning strategy, because a time-slot-based pay-per-use billing model

may not be in place.

Related Patterns
• Multi-component image (206): if an elastic infrastructure is used, the standby

pooling process should be combined with multi component resources. Such

virtual servers contain more than one application component implementation

and can, thus, serve multiple purposes. This significantly increases the flexibility

how virtual servers kept in the standby pool may be reused in the application.

• Resiliency management process (283): this pattern describes the process how

component failures can be detected and how failing component instances can be

replaced. The speed at which this replacement may be performed can be

increased by the standby pooling process as the provisioning times of replace-

ment component instances are avoided.

• Feature flag management process (271): if critical provisioning times cannot be

met even though instances are kept on standby, the feature flag management

process can help to degrade application functionality gracefully. This pattern

also describes how lazy loading can be used to startup application component

instances more quickly.

Known Uses

Almost all public cloud (62) providers are billing compute resources by the hour

and are candidates for the efficient implementation of standby pooling processes.
This can also be used for the mentioned reduction of provisioning times. If

provisioning times are critical, Hoff [204] states that Amazon EC2 [18] instances

should be kept on standby to assign them to applications more quickly.

282 5 Cloud Application Management Patterns

5.3.5 Resiliency Management Process

Application components are checked for failures and replaced automatically

without human intervention.

How can the overall availability of an application be ensured
automatically even if individual application component instances
fail?

Context

If an application depends on the availability of many individual cloud resources, the

overall availability of the application is reduced drastically. This is due to the fact

that the chance of resources failures is higher the more resources are used by an

application. Therefore, it has to be ensured that individual resources may fail

without affecting the availability of the overall application. To address failing

application components, a distributed application (160) provisions application

components to redundant cloud resources offered by an elastic infrastructure
(87). In scope of an elastic platform (91), this redundant provisioning is often

handled transparently to the customer. Nevertheless, the custom developed appli-

cation component may malfunction in a way that the provider cannot detect. A

watchdog (260) provides the infrastructure to monitor application components and

react to failures. To handle this task, the component functionality must be verified

and failing components must be replaced with newly provisioned components in a

coordinated fashion.

Solution

Application components are scaled out among multiple cloud resources and are

supervised by a watchdog (260) that executes a resiliency management process.
This process is triggered by the monitoring functionality provided by an elastic
infrastructure or an elastic platform or by the watchdog if it detects a component

failure, for example, if an application component did not send heartbeat messages.

Additionally, the resiliency management process periodically verifies application

component health. If a failure is detected, the faulty application component instance

is decommissioned and replaced by a newly provisioned instance.

5.3 Management Processes 283

Result

The monitoring functionality of providers can often be configured to generate

notifications in case a certain condition is observed. For example, the monitoring

functionality may check that a Web site offered by an application component is

reachable. If such a preconfigured condition is observed, the monitoring generates a

message that triggers the resiliency management process depicted in Fig. 5.15.

Alternatively, this message may be generated by the watchdog (260) if heartbeats of
application components are not received. Also, the resiliency management process
executed by the watchdog periodically checks for malfunctioning application

component functionality. Checks performed for this purpose may especially

include test requests sent to application components’ functionality. Such tests

may be necessary as application level failures may otherwise remain undetected.

If a failure is observed, the resiliency management process simultaneously issues

the provisioning of a replacement component using the provisioning functionality

of a provider and stops the access to the failed component. In case a queue is used to

access the component, the latter step is omitted as the component proactively

retrieves requests from the queue. After access to the component is stopped, the

component is decommissioned. This step is executed after the access has been

stopped, as the faulty component may still function in a limited fashion. If it is

decommissioned simultaneously to reconfiguring the load balancer, accesses

assigned to are certainly not handled.

The first critical design decision in this scope is the time interval at which the

correct functioning of component instances is verified periodically. Adequate

intervals mainly depend on the required recovery time and, therefore, have to respect

the provisioning time of cloud resources. Often, providers do not make assurances for

these times and heuristics have to be employed to predict them.

The second critical design decision is how failures shall be detected in the

monitored information. To detect a component failure, providers may offer moni-

toring of network availability, for example. The resiliency management process
executed by the watchdog (260), however, is obligated to interpret these values and
deduct information about application component availability from them. Further-

more, none of this information can assure that the component functions correctly on

the application level. Such tests have to be implemented individually for each cloud

application.

Variations

Failures may be hard to detect on the application level. Especially, the long-term

behavior of application components may be hard to test. To address these

challenges, application components may be randomly treated as failed after certain

time intervals and are then replaced with newly provisioned instances.

Hohpe and Woolf [1] describe detailed patterns to detect and manage failures

in an application using messaging provided by a message-oriented middleware

284 5 Cloud Application Management Patterns

(136). The fundamental approach is to use a control bus comprised out of

message queues dedicated for health information messages. Monitored

messaging components publish heartbeat messages to the control bus to state

that they are still available. To verify the proper functioning of a messaging

Fig. 5.15 Resiliency process handled by the watchdog

5.3 Management Processes 285

application Hohpe and Woolf introduce the concept of test messages these

messages are injected to the messaging application. After the processing of

these messages, results are compared to expected results to detect faulty

components. Furthermore, a wire tap may be used to inspect messages while

they traverse a message-oriented middleware (136) without affecting processing

application components.

Related Patterns
• Stateless component (171): application components managed using the resil-

iency management process should implement this pattern. It describes how

application components may completely rely on external state information rather

than maintaining their own internal state. This makes them significantly easier to

replace as the information that is lost in case of failures is reduced.

• Elasticity management process (267): the resiliency management process is often
integrated with an elasticity management process (267) that scales the number of

application components up and down according to the experienced workload.

Especially, the variation to treat application components as failed after a long runtime

can be incorporated here by replacing them during necessary scaling operations.

• Standby pooling process (279): this pattern describes how application compo-

nent instances can be kept on standby to integrate them into an application more

quickly than the provider-supplied provisioning functionality allows. In scope of

resiliency management, this could be used to speed up the replacement of failing

application components significantly.

Known Uses

The concept of the resiliency management process pattern has also been described

as a hot pool by Leymann and Roller [76]. Amazon suggests a similar approach to

assure fault tolerance in applications using their Elastic Beanstalk offering [53] by

using its monitoring service Amazon CloudWatch [198]. Users of Elastic Beanstalk

can configure a website address provided by the hosted application, which is then

periodically retrieved to monitor application health.

286 5 Cloud Application Management Patterns

Composite Cloud Application Patterns 6

This chapter contains patterns that compose patterns covered in previous sections

to describe cloud applications (Fig. 6.1). Furthermore, it describes possible distri-

bution scenarios of the composed patterns among different cloud environments

forming a hybrid cloud (75).

Native cloud application patterns (Sect. 6.2) cover fundamental structures of

distributed applications (160), how to scale them elastically, and how to integrate

cloud offerings (see Chap. 3) with their custom application components.

Hybrid cloud application patterns (Sect. 6.3) refine these fundamental composite

patterns further. They describe how the requirements of application components

may differ regarding elasticity, availability, accessibility, privacy, security, and

trust, which makes them suitable for different environments comprising a hybrid

Fig. 6.1 Map of composite patterns for cloud computing

All figures published with kind permission of # The Authors 2014. See list of figures.

C. Fehling et al., Cloud Computing Patterns,
DOI 10.1007/978-3-7091-1568-8_6, # Springer-Verlag Wien 2014

287

http://dx.doi.org/10.1007/978-3-7091-1568-8_3

cloud (75). These patterns, therefore, describe different distributions of user
interface components (175), processing components (180), data access components
(188), and data stored in storage offerings among cloud environments.

6.1 Overview of Cloud Application Patterns

The native cloud applications start with two fundamental composite patterns.

A two-tier cloud application (290) subsumes user interface component (175),

processing component (180), and data access component (188) functionality in

one application component that is scaled-out among cloud resources. Data is

handled in storage offerings (see Sect. 3.5 on Page 109). In this scope, relation
databases (115), key-value storage (119), and blob storage (112) are commonly

used. A three-tier cloud application (294) decomposes application functionality

further in order to be more flexible. It separates user interface components (175)
from processing components (180), and data access components (188). Data is

again kept in the third tier in storage offerings. Each of these tiers’ components may

then be scaled out independently. Both native cloud applications may use a content
distribution network (300) to distribute application component instances and data

replicas globally in order to assure the necessary performance for a globally

distributed user group.

Following this description of native cloud applications, the distribution of

their components among different environments in a hybrid cloud (75) is described.
A two-tier cloud application (290) is more restricted in this scope, as a larger

portion of the application functionality is subsumed into one application compo-

nent. The corresponding distributions of the application components lead to the

patterns for hybrid user interface (304), hybrid processing (308), hybrid data (311),
hybrid backup (314), and hybrid application functionality (320) – arbitrary appli-

cation functions are distributed among a hybrid cloud (75). As a specialization for

data-intensive processing the hybrid backend (317) pattern is given. A hybrid
multimedia web application (323) distributes static web content and streaming

multimedia content among different environments. Finally, all of the described

applications may be developed and tested using a hybrid development environment
(326) that uses different runtime environments for application development, test,

and production use.

288 6 Composite Cloud Application Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_3

6.2 Native Cloud Applications

The distributed application (160) pattern describes how the functionality of cloud

applications can be decomposed into separate application components. It covers

three styles of decomposition. The first decomposition style separates the layers of

an application, for example, user interface, processing, and data handling. Second,

an application can be decomposed using a process-centric approach, where func-

tionality is assigned to multiple components that are then orchestrated by a process

model. Third, a pipes-and-filters based decomposition covered dividing application

functionality in components that are interconnected by data channels through which

data is passed and processed continuously.

In the following, we cover two concrete approaches to decompose a cloud

application. The two-tier cloud application (290) and three-tier cloud application
(294) patterns describe the result of a layered decomposition. The other decompo-

sition approaches can be used in a similar fashion.

We cover in detail which application components (see Sect. 4.3 on Page 166)

and cloud offerings (see Chap. 3) are used to form a cloud-native application.

Furthermore, this section describes the content distribution network (300) pattern

that can be used in conjunction with applications to make large amounts of data

available efficiently.

6.2 Native Cloud Applications 289

http://dx.doi.org/10.1007/978-3-7091-1568-8_4
http://dx.doi.org/10.1007/978-3-7091-1568-8_3

6.2.1 Two-Tier Cloud Application

Presentation and business logic is bundled to one stateless tier that is easy to

scale. This tier is separated from the data tier that is harder to scale and often

handled by a provider-supplied storage offering.

How can application functionality be separated from data handling
to scale them independently?

Context

A distributed application (160) is decomposed into loosely-coupled (156) application
components to scale individual application functions independently by automatically

provisioning and decommissioning application component instances. The main

influencing factor regarding this elastic scaling is the data handled by the application.

Data handling functionality is significantly harder to scale than stateless components
(171), because scaled out stateful components (168) have to coordinate state informa-

tion between instances. Therefore, the application shall be decomposed in a fashion

that separates the easy-to-scale functionality from the hard-to-scale functionality.

The application shall, furthermore, exploit the elasticity of an underlying cloud

environment to benefit from the cloud properties described in Sect. 1.1 on Page 3,

especially, pay-per-use and rapid elasticity. This enables the application to offer

elasticity and possibly pay-per-use pricing models itself.

Solution

The two-tier cloud application decomposed application functionality into data

handling functionality, provided by one or several storage offerings (see Chap. 3),

and application components handling presentation and business logic. The two tiers

are depicted in Fig. 6.2. The first tier is comprised of a load balancer and one

application component subsuming the necessary presentation and business logic

functionality that is scaled out elastically by an elastic load balancer (254). The

second tier provides data handling functionality and is commonly realized by one or

more provider-supplied storage offerings. It handles the data accessed by the appli-

cation component providing presentation and business logic functionality. This

separation enables the two tiers to elastically scale independently with their

workloads.

290 6 Composite Cloud Application Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_1
http://dx.doi.org/10.1007/978-3-7091-1568-8_3

Result

A two-tier cloud application implements the distributed application (160) pattern

separating the data tier from the presentation and business logic tier. As seen

in Fig. 6.2, the presentation and business logic is provided by one scaled-out

application component that implements the patterns stateless component (171),
user interface component (175), processing component (180) and data access
component (188). This application component, therefore, handles accesses by

users, workload processing, and data access in a holistic fashion. It is implemented

as a stateless component (171) so that additional instances can be provisioned and

decommissioned efficiently to support rapid elasticity. Application state – data

handled by the application is kept in the separate data tier commonly delegated

to provider-supplied storage offerings, for example, a relational database (115)

offering or key-value storage (119). Session state – the state of user-interaction

with the application is provided with every request or also managed by a

storage offering as described by the stateless component (171) pattern. These

offerings assure the necessary elasticity and also offer a pay-per-use pricing

scheme. Depending on the requirements in a concrete usage scenario, the applica-

tion logic tier may be extended with other application component patterns (see Sect.

4.3 on Page 166), such as the batch processing component (185) pattern to actively
delay workload, or data abstractor (194) to cope with eventual consistent (126)
storage offerings comprising the data tier.

An elastic load balancer (254) determines the number of required instances of

application components and provisions and decommissions them as needed, com-

monly, via an elastic infrastructure (87) or elastic platform (91). The elastic load
balancer (254) ensures that the right number of component instances is provisioned

based on the number of user accesses notified by the load balancer, and possibly

also monitors the utilization of the application components. A pay-per-use pricing

Storage
Offerings

scale

Elas�c
Load Balancer

Number of

Load
Balancer

Presenta�on and Business Logic Applica�on Component

Requests

Stateless

Presenta�on and Business Logic Tier Data Tier

Component
User Interface

Component
Processing
Component

Data Access
Component

Fig. 6.2 Exemplary architecture of a two-tier cloud application

6.2 Native Cloud Applications 291

http://dx.doi.org/10.1007/978-3-7091-1568-8_4

scheme can be offered by the two-tier cloud application itself due to this elastic

scaling, because the number of application component instances and, thus, the cost

of running the application correlates with the experienced requests.

Variations

Instead of using provider-supplied storage offerings, the data tier may be

implemented by the application developer using stateful components (168).

In this variation, the elastic scaling of the data tier has to be ensured by the

application developer as described by the stateful component (168) pattern.

The other variants of the two-tier cloud application pattern use provider-supplied

storage offerings and have to cope with different consistency behavior displayed by

these offerings – strict consistency (123) and eventual consistency (126).
In case the chosen storage offering implements the strict consistency (123)

pattern no additional measures regarding consistency need to be taken in the

presentation and business logic tier. It must, however, be ensured that the imple-

mentation of the data tier can scale enough to accommodate the potentially high

number of presentation and business logic components accessing it concurrently.

In case the storage offering implements the eventual consistency (126) pattern

the presentation and business logic tier must deal with data inconsistencies that may

lead to the following challenges:

• Duplicate reads: if data is retrieved from the data tier, processed, and stored

again, the effect of data manipulations may not be visible immediately. There

is a chance that an unprocessed version of a data element may be read again

even though it has already been processed and stored successfully before.

To deal with this issue, the application components should be implemented as

idempotent processors (197) that can deal with duplicate reads of the same data

element by implementing idempotent operations or by detecting duplicate reads.

• Inconsistent view: if large amounts of data are processed and accumulated

by the two-tier cloud application, data may change during processing and

while it is being retrieved from the storage offering. To deal with this issue,

the application component may implement the data abstractor (194) pattern.

Data is then approximated and abstracted to hide inconsistencies. For example,

instead of providing a concrete number of items that a Web shop has in store,

item availability could only specified as “available”, “low”, or “unavailable”.

However, such data abstractions have to be acceptable in the usage scenario

supported by the application.

Related Patterns

In addition to the patterns mentioned above that are used by the two-tier cloud
application, it is related to the following patterns:

• Three-tier cloud application (294): if the processing handled by the cloud appli-

cation is computation intensive, it may be feasible to separate it from the user

292 6 Composite Cloud Application Patterns

interface functionality as it allows to elastically scale these tiers individually,

instead of scaling the presentation and business logic as a combined tier.

• Content distribution network (300): if the two-tier cloud application needs to

handle a globally distributed user group, a content distribution network can be

used to provide local application component instances and data replicas to users

in order to increase access performance.

• Hybrid data (311), hybrid backup (314), and hybrid application functions (320):
these patterns describe how the two tiers of a two-tier cloud application can

be distributed among different runtime environments forming a hybrid cloud

application. Especially, it is motivated in which business usage scenario a certain

distribution should be used.

• Hybrid development environment (326): this pattern describes how different

runtime environments may be used during the development, test, and production

use of a two-tier cloud application.

Known Uses

PaaS (49) offerings for web applications such as the Google App Engine [21]

and Amazon ElasticBeanstalk [53] tend to imply applications to be build using the

elastic two-tier cloud application pattern, separating the application in a

presentation/business logic tier hosted on an elastic platform (91) and a data tier

hosted on a cloud storage offering. Varia [93, 154] discusses this decomposition for

Amazon Web Services (AWS) [138]. Guest [206] discusses a similar decomposi-

tion approach to create elastic cloud applications on Windows Azure [52].

One common technology stack to build two-tier cloud applications is to use a

light-weight frontend technology such as PHP [207] or Active Server Pages (ASP)

[208] and elastically scale the underlying Apache Web Server [209], Microsoft

Internet Information Services (IIS) [210] or Servlet Container, such as Apache

Tomcat [73] along with the applications implemented as stateless components
(171). The data tier is often implemented as MySQL [112] database cluster in

traditional setups or one of the cloud storage offerings in more cloud-native

settings. Often, with high-volume PHP/MySQL Web-applications, you will find

this pattern implicitly implemented: a stateless PHP frontend backed by a MySQL

cluster.

The main problem in these settings is session handling. Often, mechanisms such

as sticky-sessions are employed to redirect individual users to the same of

the horizontally scaled frontend servers that served the previous requests. This

allows keeping sessions in memory to improve performance sometimes with

asynchronous session-replication to a central data tier. This prevents having to

synchronously write session information to a central data store with all persistent

session data accessible to all frontend servers. In case of environment-based
availability (98) of the frontend servers, sessions are either lost on crash of a server
or the replica in the central data store can be retrieved.

6.2 Native Cloud Applications 293

6.2.2 Three-Tier Cloud Application

Presentation logic, business logic, and data handling are realized as separate

tiers to scale stateless presentation and compute-intensive processing indepen-

dently of the data tier, which is harder to scale and often handled by the cloud

provider.

How can presentation logic, business logic, and data handling be
decomposed into separate tiers that are scaled independently?

Context

A distributed application (160) is decomposed into separate application

components that are loosely-coupled (156) and scaled independent of each other.

In scope of a two-tier cloud application (290), the main issue that motivated

decomposition is that stateful components (168) are harder to scale than stateless
components (171) and, thus, are separated from the remainder of the application.

However, there can be more differentiating factors of application tiers. For exam-

ple, if processing components (180) are more computation intensive or are used less

frequently than user interface components (175), aligning the elastic scaling of

these two components by summarizing their implementation in one tier can be

inefficient. This issue arises every time components comprising a distributed
application (160) experiences different workloads introduced in Sect. 2.2 on Page

23: static workload (26), periodic workload (29), unpredictable workload (36), or

continuously changing workload (40). The number of provisioned component

instances cannot be aligned well to the different workloads if they are summarized

to coarse grained tiers. A further decomposition may allow a tighter alignment of

application component instances to experienced workload under such conditions,

especially important, if the application shall offer elasticity and pay-per-use pricing

models itself. While tiers are elastically scaled independently regarding their

workloads they have to be integrated to ensure the end-to-end functionality of the

application.

Solution

The distributed application (160) is decomposed into three tiers shown exemplarily

in Fig. 6.3, where each tier is elastically scaled independently. The presentation tier

is comprised of a load balancer and an application component that implements the

294 6 Composite Cloud Application Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_2

stateless component (171) pattern and user interface component (175) pattern. New
instances of this application component are provisioned on demand by an elastic
load balancer (254) based on the number of requests issued by application users.

Communication between the presentation tier and the business logic tier is realized

via asynchronous messaging provided by a message-oriented middleware (136).

This communication through an intermediary ensures loose coupling (156) between
those tiers, which is essential to allow the business logic tier to be scaled indepen-

dently of the presentation tier.

The business logic tier is comprised of an application component implementing

the stateless component pattern in addition to the processing component (180)
pattern. This business logic component interacts with the message queue provided
by the message-oriented middleware (136) retrieving the requests from the presen-

tation tier. It is scaled elastically by an elastic queue (257), which provisions and

decommissions instances of the business logic application components based on the

number of messages buffered by the message queue.

The data tier is again accessed by the business logic tier through a message

queue to ensure loose coupling (156) between these two tiers. The data tier is

comprised of storage offerings accessed by an application component

implementing the data access component (188) pattern. The data access component

interacts with the used storage offerings, for example, relational databases (115),
key-value storage (119), or blob storage (112) that are obtained from the cloud

provider and provides data using message queues provided by themessage-oriented
middleware (136). Multiple message queues may be used between each tier,

omitted in Fig. 6.3 for space limitations. If large amounts of data have to be

exchanged between tiers that cannot be handled in single messages, application

components may also access the storage offerings directly. In this case, the

messages only contain the addresses of to be accessed data elements.

Storage
Offerings

scale scale

Elas�c
Load Balancer

Elas�c
Queue

Load
Balancer

Presenta�on
Applica�on Component

Business Logic
Applica�on Component

Number of
Requests

Number of
queued

 Messages

Stateless
Component

User Interface
Component

Stateless
Component

Processing
Component

Data Access
Component

Presenta�on Tier Data TierBusiness Logic Tier

scale

Elas�c
Queue

Number of
queued

 Messages

Fig. 6.3 Exemplary architecture of a three-tier cloud application

6.2 Native Cloud Applications 295

Result

In contrast to a two-tier cloud application (290), a three-tier cloud application
needs to be able to scale presentation, business logic, and data handling indepen-

dently, because the requirements of these functions regarding the necessary number

of application component instances to handle workload differ greatly. To exploit

the cloud computing properties introduced in Sect. 1.1 on Page 3, especially, rapid

elasticity and pay-per-use this functionality is, therefore, assigned to different tiers.

To be able to scale each tier independently these tiers are decoupled from each

other. As in a two-tier cloud application (290) the business logic and the data tier

are decoupled. Therefore, the communication mechanism between business logic

and data tier is asynchronous. The access between data handling components and

storage offerings is commonly synchronous via interfaces provided by the storage

offering. The presentation tier is also decoupled from the business logic tier via

asynchronous messaging enabled by a message-oriented middleware (136). The

message queues assure at-least-once delivery (144) or exactly-once delivery (141)
of messages leading to two variations of a three-tier cloud application (see

variations). Asynchronous messaging enables independent scaling of both tiers

and reliably stores messages exchanged between both tiers. Thus, the business

logic application component can be scaled according to the number of messages

in the queue. To enable this, the number of queued message are monitored by an

elastic queue (257) that accesses the resource management interface of the elastic
platform (91) or elastic infrastructure (87) underpinning the business logic

components.

An exemplary communication path in the three-tier cloud application works as

follows: a request is sent to the presentation tier via the load balancer seen on the

left of Fig. 6.3. Depending on the number of requests assigned this way, the elastic

load balancer provisions or decommissions presentation application components.

After handling the request and validating the necessary user inputs the presentation

application component sends the request to the message queue for the business

logic tier and informs the user respectively. If the workload experienced by the

business tier has reached a certain threshold the elastic queue (257) provisions a

new instance of the business logic components. When one of the business logic

components is idle, it consumes the message from the queue. The message is now

invisible to all other business logic component instances either through a transac-

tional messaging mechanism, described by transaction-based delivery (146) or for
a certain timeout-window, as described by timeout-based delivery (149). This

sharing of one queue between multiple component instances is also described by

the processing component (180) pattern and by Hohpe and Woolf [1] as the

competing consumer pattern. The business logic component processes the message

and stores necessary data in the data tier. Having finished processing, the business

logic component commits the message from a transaction-based delivery queue or
acknowledges the message to the queue in a timeout-based delivery queue. This

behavior is described in the transaction-based processor (201) and timeout-based
message processor (204) patterns, respectively. In case the business logic

296 6 Composite Cloud Application Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

component fails to process a message from the queue due to a failure of the node on

which it runs or through any other cause, the transaction is aborted or the message is

not acknowledged and the message appears in the queue again where it can be

processed by another processing component instance. Using these mechanisms it is

possible to only have environment-based availability (98) for the presentation tier

components and business logic tier components, as the state of the application is

always securely and persistently stored in the queues and the data tier.

Variations

Regarding the interaction of the data access components (188) with the storage

offerings, two additional variants exist for the use of storage offerings displaying

strict consistency (123) and eventual consistency (126). These variants are equiva-
lent to the two variants of the two-tier cloud application (290) described on Page

292. Additional variants of the three-tier cloud application exist depending on the

delivery behavior displayed by the used message queue between the presentation

application component and business logic application component – exactly-once
delivery (141) and at-least-once delivery (144).

In case the used queues have exactly-once delivery (141) behavior, there are no
additional measures required to deal with duplicate messages as messages

exchanged between the tiers will always be delivered exactly once.

In case the queues used only guarantee at-least-once delivery (144), duplicate

messages may arrive in the business logic tier, or the presentation tier. Thus, it is

important to take countermeasures such as implementing the components as idem-
potent processors (197). A similar problem may arise if the used storage offering is

eventually consistent (126). This can be addressed by implementing the data access

component as idempotent processor (197) detecting data inconsistencies or as data
abstractor (194) hiding data inconsistencies.

Related Patterns

In addition to the patterns mentioned above that are used by the three-tier cloud
application, it is related to the following pattern:

• Two-tier cloud application (290): the three-tier cloud application divides

application functionality into three tiers that have different requirements

on their hosting environment. If these requirements do not differ greatly, for

example, if multiple application components need similar amounts of computa-

tion capability, they should be summarized in one application component.

Especially, in usage scenarios where applications experience very small workloads,

this summarization can lead to a more efficient use of resources as is possible

in a three-tier cloud application that is deployed in a more distributed fashion.

The separation of data from stateless application functionality is, however,

still a good design decision leading to a two-tier cloud application (290).

6.2 Native Cloud Applications 297

• Content distribution network (300): if a globally distributed user group accesses

the three-tier cloud application, application component instances and data

can be replicated according to this pattern to exploit access locality in order to

increase performance.

• Hybrid cloud application patterns (Sect. 6.3): the patterns of this section describe

how the tiers of a three-tier cloud application can be hosted in different runtime

environments forming a hybrid cloud (75). Following these patterns, different

requirements of application components regarding elasticity, availability,

privacy, security, and trust can be addressed and matched efficiently.

• Hybrid development environment (326): a three-tier cloud application can use

different runtime environments during its development, test, and production

phases, where requirements can differ greatly. How this can be realized is

described by the hybrid development environment pattern.

Known Uses

Cloud providers such as Amazon AWS [138] and Microsoft Azure [52] offer all

ingredients to build three-tier cloud applications and propose to build applications

in the same or similar fashion: Varia [93, 154] suggests the same decomposition of

application components into separate components and their loose coupling (156)

via messages. Guest [206] discusses how to make the different tiers of applications

using resources provided from Windows Azure [52] elastic.

When examining higher-load traditional Java EE [211] applications in an enter-

prise setting, you will often find these applications to be built using queued

transaction processing as described by Bernstein and Newcomer [128] making

them similar to the three-tier cloud application pattern. Message processors in

these applications read messages from a request queue, process the message, and

write the result as a message to a reply queue within the scope of one transaction.

This ensures that request messages are not lost if their processing fails. This

approach is also discussed in greater detail by the transaction-based processor
(201) pattern in this book. Such Java EE applications implement similar

mechanisms, for example, a data tier separated from individually scaling tiers for

processing and the use of messaging between tiers.

The difference of a three-tier cloud application to a traditional Java EE three-

tier application using, for example, Java Message Service (JMS)-based message

queuing [145, 146] between presentation and business logic tier are the properties

of the used messaging and storage offerings. Traditional application often

assume and require that message-oriented middleware (136) provides exactly-
once-delivery (141) and data stores provide strict consistency (123) many cloud-

based messaging offerings do not assure this properties but display at-least-once
delivery (144). Cloud-based storage offerings often assure eventual consistency
(126). In Sect. 3.2 on Page 81, we cover this impact of cloud computing on

offering properties in greater detail. In our experience, even for enterprise

applications at-least-once delivery (144) and eventual consistency (126) may be

298 6 Composite Cloud Application Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_3

sufficient – especially when business requirements are closely re-examined. Often,

exact information handled by a data store is not required (i.e. when dealing with

available seats or parking lots in a booking system), but only an estimation

(“enough”, “critical”, “not enough”). Such data is often attainable with at-least-
once delivery (144) messages from an eventual consistent (126) storage offering.

The data abstractor (194) pattern covers different approaches to present and use

eventual consistent date in greater detail. Under these conditions, what seems to be

less-accurate can be accurate enough for a lot of business settings. Furthermore,

many cloud storage offerings support different consistency behavior, a variation

described by the eventual consistency (126) pattern. Thus, for a yearly inventory

task the strictly consistent data retrieval can be used, whereas the eventually
consistent but higher available or cheaper request can be used for the common

requests, where availability of the system is valued higher than the consistency of

returned data.

6.2 Native Cloud Applications 299

6.2.3 Content Distribution Network

Application component instances and data handled by them are globally

distributed to meet the access performance required by a global user group.

How can timely access to an application be ensured for a globally
distributed user group?

Context

The application components comprising a distributed application (160) are hosted

in globally distributed environments. This application serves content and function-

ality to a user group of varying size, i.e., generating periodic workload (29), once-
in-a-lifetime workload (33), unpredictable workload (36), or continuously changing
workload (40). The served content shall be accessible in a timely manner. Espe-

cially, if the application provides multimedia content to users, for example,

streamed videos and music the amount of data to be served increases drastically.

This poses challenges for distribution networks. If such multimedia content is

located too far from the user accessing it, the communication delay of the distribu-

tion network may hinder the timely access to data. Therefore, storing content in

only one centralized location, i.e., one cloud or data center is unfeasible.

Solution

Content replicas are established in different physical locations of one or multiple

clouds as depicted in Fig. 6.4. During this distribution of replicas, the topology of

distribution networks is considered to ensure locality for all globally distributed

user groups. Replicas are updated from a central location.

Result

Content accesses of users can be routed to replicas with the best connectivity to

ensure performance. This connectivity may not be confused with geographical

proximity. It only regards the connectivity and performance of the underlying

connection network. A critical design decision in this scope is the number of

replicates and their consistency assurances. A large number of replicas increases

the access speed, because locality can be exploited more efficiently. However, it

also increases the effort required to update replicas. Therefore, if content changes

300 6 Composite Cloud Application Patterns

too frequently, updating the replicas may become a bottleneck. Replicas may be

updated using two update distribution techniques.

Push replication of data: if a replica is accessible from a central location

controlling the updates of replicas, content may be pushed to the replica. Therefore,

changes of the main replica can be directly reflected to other replicas in the system

leading to strict consistency (123) or updates can be pushed periodically leading to

eventual consistency (126).
Pull replication of data: if the replica is not directly accessible from a central

controlling location, the replica may pull updates. Therefore, after certain time

intervals replicas check if the central data has been updated and updates itself

accordingly. This results in eventually consistent (126) behavior by design.

Variations

Content may be replicated seamlessly through caching. In scope of the content
distribution network pattern, replicas are explicitly managed by the application.

Caches are replicas that are managed transparent to the application. They are

distributed among the connection network and store accessed content seamlessly

to reduce data access times. This approach, often, cannot be controlled by the

application. Caches are kept up-to-date automatically, for example, by means of

freshness control and validation used by Web caches, an approach described in the

HTTP standard [212]. Freshness control refers to techniques to determine whether

or not a cached data element is up-to-data or not. In contrast to caches, the content
distribution network empowers the application to explicitly specify the location of

replicas and influences the style in which they are updated.

Related Patterns
• Strict consistency (123): consistent updates to replicas are assured by handling

updates to all replicas immediately, often, in one transaction. This, however,

replication

Application
Components

Data

User Interface
Component

Processing
Component

Data Access
Component

Storage
Offerings

User Interface
Component

Processing
Component

Data Access
Component

Storage
Offerings

Fig. 6.4 Content distribution from a storage offering to two cloud environments

6.2 Native Cloud Applications 301

makes the system vulnerable towards network partitioning and should, therefore,

only be used if all users must be served with the same updated data instantly.

• Eventually consistency (126): if data and application component replicas

are updated according to eventual consistency, updates propagate the global

distribution network asynchronously. Therefore, different portions of the global

user group may be served with different content or application functionality.

As asynchronous changes make the application more resilient towards commu-

nication failures and partitions of the network, this approach should be chosen

whenever the usage scenario allows it.

Known Uses

The video distribution product of Akamai [213] and also Akamai’s overall

network system architecture [214] are built similar to the content distribution

pattern. Amazon’s content delivery service, CloudFront [104] also provides a

similar setup. Another content delivery network that may be integrated with

existing websites is CloudFlare [215]. Dreibelbis et al. [216] describe more detailed

patterns on how to manage different data sources spanning multiple regions an

applications using so called master data management.

302 6 Composite Cloud Application Patterns

6.3 Hybrid Cloud Applications

A hybrid cloud (75) integrates multiple clouds and static data centers into

a homogenous hosting environment. Often, hybrid clouds are used to address

different requirements of applications and their components regarding three

properties of the hosting environment: elasticity, accessibility, and the combined

assurances for privacy, security, and trust.

Elasticity: resources available in different cloud environments can be provisioned

and decommissioned at a different level of flexibility. Especially, application

components experiencing periodic workload (29), unpredictable workload (36), contin-
uously changing workload (40) can benefit from a more flexible environment,

where no upfront investments in the infrastructure is necessary and the number or

resources can be tightly adjusted to the current demand. Especially, in a private
cloud (66) accessed by a small number of users, this property may be limited.

Similar challenges may arise in small community clouds (71) as well.
Accessibility: resources in different environments are accessible through differ-

ent means of communication. The infrastructure used within a company is usually

accessible to employees only and is specifically guarded against access from the

outside of the company. Applications used for collaboration with other companies,

however, have to be made available to a much broader user group.

Privacy, security, and trust: this property is commonly determined by the

importance of data handled by an application. If data contains business-critical

information unwanted access to it can be damaging to a company. Even if the

respective security mechanisms are supported by the cloud provider, it often

remains an issue of trust in the provider and other cloud users whether or not a

cloud environment is suitable to host an application or its components.

In the following, different composite patterns describe the distribution of appli-

cation components among clouds and static data centers. The covered applications

consist of user-interface components (175), processing components (180), and

either stateful components (168) or data access components (188) relying on

storage offerings (see Sect. 3.5 on Page 109). These components are distributed

differently between cloud environments and static data centers forming a hybrid
cloud. The patterns consider a hybrid cloud to be comprised of a static data center

and an elastic cloud, for example, a public cloud (62) or community cloud (71).

Because a static data center does not use cloud technologies and is considered the

most secure environment while public clouds and community clouds commonly

ensure the highest levels of accessibility and elasticity, these environments are most

differential regarding the above mentioned environmental properties. We used this

combination of clouds and static data centers to describe hybrid cloud applications,

so that the requirements why applications components are assigned to an environ-

ment become as clear as possible. However, the hybrid cloud application patterns

may also be used to integrate arbitrary clouds and static data centers to form a

hybrid cloud, for example, a static data center and a private cloud (66), two public
clouds (62) etc.

6.3 Hybrid Cloud Applications 303

http://dx.doi.org/10.1007/978-3-7091-1568-8_3

6.3.1 Hybrid User Interface

Varying workload from a user group interacting asynchronously with an

application is handled in an elastic environment while the remainder of an

application resides in a static environment.

How can a user interface for asynchronous interaction be hosted in a
cloud while being integrated with an application otherwise hosted in
a static data center?

Context

An application serves user groups with different workload behavior. One user group

generates static workload (26), while another user group generates periodic work-
load (29), once-in-a-lifetime workload (33), unpredictable workload (36), or con-
tinuously changing workload (40). Therefore, the size of the first user group is

known during system design time, the number of other users may be unknown

beforehand or may change frequently over time. Furthermore, the user group

generating other workload than static workload (26) interacts with the application

in an asynchronous fashion, thus, users issue requests that do not generate any direct

feedback. They may, for example, issue orders to a shop, apply for a credit card, or

request that account information is sent to them via e-mail. Since the predictability

of the user group size and workload behavior differs, it shall be ensured that

unexpected peak workloads do not affect the performance of the application

while each user group is handled by the most suitable cloud environment.

Solution

The user interface component (175) serving users generating varying workload is

hosted in an elastic cloud environment as shown in Fig. 6.5. Other application

components that are more suited for an on-premise application due to the static

workload behavior of the other user group are hosted in a static environment. The

user interface deployed in the elastic cloud is integrated with the remainder of the

application in a decoupled fashion using messaging to ensure loose coupling (156)

between environments.

304 6 Composite Cloud Application Patterns

Result

The user interface component (175) in the elastic cloud is decoupled from the

application components in the static environment, as it can operate without

any direct communication with application components hosted in the static envi-

ronment. Due to this loose coupling (156) it is, thus, ensured that the elasticity

provided by the cloud can be efficiently used to scale the elastic user interface
components without being affected by the static performance of components that

are hosted in the static environment. The cloud enables the elastic user interface
component to scale out, in order to react to workload peaks of its user group.

The underlying pay-per-use pricing model of the cloud ensures that costs are

minimized. The user interface component in the elastic cloud provides asynchro-

nous access to the application, because accessed functions do not directly

give results that would require interaction with other application components.

Provided functionality is, therefore, limited to data input and asynchronous data

output. The data input functionality may only return the information that the inquiry

or access performed by the user has been received and will be processed. Asyn-

chronous data output may return information based on functionality and

data provided in the static environment, but the users have to wait for results,

which are provided asynchronously, for example, via e-mail.

Variations

The hybrid user interface pattern combines a hybrid cloud (75) formed by a

static environment and an elastic cloud. The same approach can be used to integrate

two elastic cloud environments and application components may also be distributed

among more than two environments. If security is an issue, because the cloud

environment is a public cloud (62) or community cloud (71), the data entered by

the user can be encrypted in the public cloud by using an asymmetric encryption

[217, 218], i.e., the data is encrypted in the public cloud by using a public key and

after transmission to the private cloud (66) it is decrypted by using a private key.

Fig. 6.5 Hybrid user interface in an elastic cloud and a static data center

6.3 Hybrid Cloud Applications 305

Sensitive data that is sent from the user interface to the other application components

in the private cloud are, thus, protected. However, data that is asynchronously sent

from the private to the public cloud does not guarantee the same privacy and

security, because it has to be decrypted by user interface components residing in

the elastic cloud, thus, the key required for decryption has to be stored there as well.

Related Patterns
• Idempotent processor (197): if the message-oriented middleware (136) providing

the message queue that is used for data transfer guarantees at-least-once delivery
(144), the component receiving messages from the elastic user interface should

implement the idempotent processor pattern to detect message duplicates.

• Hybrid processing (308) and hybrid backend (317): if the data obtained from the

varying user group requires additional processing, one of these two patterns may

be combined with the hybrid user interface to perform additional processing in

the elastic cloud environment.

• Hybrid application functions (320): the hybrid user interface pattern

distributes application components among different environments based on the

different user groups accessing them. As an alternative, the user group can

be homogeneous, but accesses application functionality differently, i.e., the

application functions experience different workloads or have different security

requirements. If this is the case, different environments may be used for different

application functionality on all layers of the application stack, as described

by the hybrid application functions pattern.
• Stateless component (171): the user interface provisioned in the elastic environ-

ment should be implemented as a stateless component to ease scaling it out

among multiple cloud resources. This scaling can either be performed by a

custom implementation provided by the application developer or through the

use of existing scaling functionality of the used environment. In either case,

the management patterns (Chap. 5) should be considered.

• Three-tier cloud application (294): the exemplary application shown in

Fig. 6.5 considers three application tiers for user interfaces, processing, and

data handling. The hybrid user interface could also be combined with other

distributed applications (160) that do not use this decomposition of application

functionality into three tiers, for example, a two-tier cloud application (290).

Known Uses

In the German city Friedrichshafen, different IT projects have been conducted to

increase the quality of life of inhabitants, for example, by optimizing processes of

the public administration and providing more user-friendly interfaces [219, 220].

One of the projects provided a Web interface through which parents can sign up

their children for a kindergarten place via the Internet [30, 219]. The corresponding

portal is made available at all times, but experiences periodic workload (29),

because children are enrolled only during certain time periods each year. Parents

306 6 Composite Cloud Application Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_5

can sign up their children until a certain deadline after which an internal process of

the public administration office handles the assignment of children to available

places. Since the parents do not get any direct feedback during the sign-up, the user

interface used by them can be decoupled completely from the rest of the applica-

tion. It is used only for asynchronous data input and is moved to an elastic cloud due

to the inconsistent workload it experiences.

6.3 Hybrid Cloud Applications 307

6.3.2 Hybrid Processing

Processing functionality that experiences varying workload is hosted in an elastic

cloud while the remainder of an application resides in a static environment.

How can processing components that experiences varying workload
be hosted in an elastic cloud while the remainder of an application is
hosted in a static data center?

Context

A distributed application (160) provides processing functionality that experience

different workload behavior. The user group accessing the application is, thus,

predictable in size, but accesses the functions provided by the application

differently. While most of the functions are used equally over time and, therefore,

experience static workload (26), some processing components (180) experience

periodic workload (29), unpredictable workload (36), or continuously changing
workload (40). While the static workload (26) can be handled efficiently in a static

environment, investments in hardware and software required to handle the varying

workload would be inefficient. Therefore, the processing functionality of the

application for which access intensity varies shall be hosted in an elastic cloud.

Solution

The processing components (180) experiencing varying workloads are provisioned

in an elastic cloud as shown in Fig. 6.6. To ease their provisioning and decom-

missioning and reduce the influence on components hosted in the static environ-

ment, loose coupling (156) is ensured by exchanging information between the

hosting environments asynchronously via messages. Messages are handled by

message queues provided by a message-oriented middleware (136). These messages

contain all information required by the processing components, therefore, no data is

stored in the cloud environment for longer periods of time.

Result

The processing component (180) experiencing varying workload is decoupled

from the application through the use of messaging. It may be accessed directly

308 6 Composite Cloud Application Patterns

from other user interface components (175) or processing components (180) as

shown in Fig. 6.6. The results of this processing are either returned to the compo-

nent that initiated the processing or to a different user interface component,
processing component or data access component (188).

The communication via messages ensures that the elastic processing component

can be provisioned flexibly. Multiple instances of this processing component are

coordinated by accessing the same queue, a concept introduced by Hohpe and

Woolf [1] as competing consumer and also covered in detail by the processing
component (180) pattern in Chap. 4. The asynchronous access, therefore, enables

the on-demand provisioning of elastic processing components only when they

are needed.

A critical design challenge is to determine when exactly to provision and

decommission the elastic processing components. The application can either rely

on scaling functionality of the cloud provider or implement custom management

components. In either case, the management patterns (Chap. 5) should be consid-

ered: an elasticity manager (250) can scale the processing component based on

the utilization of IT resources, such as virtual servers, on which the processing

component is hosted. An elastic queue (257) can additionally monitor the number

of messages in the message queue from which the processing component retrieves

requests to determine the required number of processing component instances.

Waiting for a certain number of requests in the input queue to process them as a

batch may also be an efficient approach as described by the batch processing
component (185) pattern in greater detail.

Variations

The hybrid processing pattern considers the hybrid cloud (75) to be comprised

of a static environment and an elastic environment. The same approach may be

Sta�c

User Interface
Component

Processing
Component

Data Access
Component

Stateful
Component

Elastic
Fig. 6.6 Hybrid processing

in a static data center and

an elastic cloud

6.3 Hybrid Cloud Applications 309

http://dx.doi.org/10.1007/978-3-7091-1568-8_4
http://dx.doi.org/10.1007/978-3-7091-1568-8_5

applied to integrate different cloud environments. Especially, it can be used to

integrate processing components from equal environments. When the processing

functionality is then required, the application may identify the most suitable

environment during runtime.

Related Patterns
• Hybrid backend (317): in case the processing components in the elastic cloud

environment require access to larger amount of data than what can be trans-

ferred with each request, data exchange with the elastic cloud also has to be

established, as described the hybrid backend pattern.

• Idempotent processor (197): if the message-oriented middleware (136) used to

exchange messages assures at-least-once delivery (144) of messages, thus, if

messages can be delivered more than once, the elastic processing components

and its communication partners should implement the idempotent processor
pattern in order to cope with such message duplicates.

• Three-tier cloud application (294): the exemplary application depicted in

Fig. 6.6 divides application functionality among three components. The hybrid

processing pattern could, however, also be combined with other distributed
applications (160), for example, a two-tier cloud application (290).

Known Uses

Data format transformation is often performed using external cloud providers.

For example, Ooyala.com [221] provides a cloud offering for video transformation.

This task often requires specialized and expensive software. For many users, it is

unprofitable to invest in such applications and the required infrastructure, if videos

are only transformed occasionally. The digitalization of newspaper archives of

the New York Times [31, 32] created an once-in-a-lifetime workload (33) for

which a newspaper company could not provide the required resources. Scanned

versions of newspapers were therefore transformed into PDF documents via exter-

nal cloud resources obtained from Amazon EC2 [18]. Another example is the

digitalization of Hillary Clinton’s White House schedule [222]. If similar

processing workload is required by an application on a more frequent basis relying

on such large amounts of data, the hybrid backend (317) pattern should be used to

integrate the corresponding processing components with the rest of the application

in a coordinated fashion.

310 6 Composite Cloud Application Patterns

6.3.3 Hybrid Data

Data of varying size is hosted in an elastic cloud while the remainder of an

application resides in a static environment.

How can a data handling functionality that experiences varying
workload be hosted in an elastic cloud while the rest of the
application is located in a static data center?

Context

A distributed application (160) handles data whose size varies drastically over

time. Corresponding to the application workloads due to requests of users that can

be characterized as periodic workload (29), unpredictable workload (36), or con-
tinuously changing workload (40), data handling components and storage offerings

may experience varying workload leading to changes in the amount of handled

data. Large amounts of data may, thus, be generated periodically and are then

deleted again, may increase and decrease randomly, or may display a general

increase or decrease over time. Especially, during these changes, the user number

and their accesses to the application can be static resulting in static workload (26)

on the remainder of the application components. Such a situation may, for example,

arise if the processing components of an application generate large amounts of

temporary data that is later consolidated. Archiving and backup applications dis-

play continuously changing workload (40) as data increases over time. Therefore,

the main number of application components would be suitable for a static environ-

ment, but the size of handled data is a limiting factor.

Solution

Data whose varying size makes it unsuitable for hosting in a static environment is

handled by storage offerings in an elastic cloud as depicted in Fig. 6.7. At this

location data is either accessed by data access components (188) that are hosted in

the static environment or by data access components hosted in the elastic environ-

ment. Some data that is static in size and possibly has higher requirements on

privacy, security, and trust is handled by stateful components (168) hosted in the

static data center. This distribution of application components enables the

distributed application (160) to handle varying amounts of data even though it is

mainly provisioned to a static environment.

6.3 Hybrid Cloud Applications 311

Result

The static application in Fig. 6.7 is decomposed into the three tiers, user interface
component (175), processing component (180), and data access component (188).
In the static environment a stateful component (168) is used for data storage.

Alternatively, this could also be a different storage offering, for example, if a

private cloud (66) is used. A critical design issue when integrating elastic data

handling with a static application using this approach is the connection speed

between the environments, which must be sufficient to guarantee timely data

accesses. Data to which time-critical access must be ensured is often hosted close

to the other application components in the static environment or is temporarily

replicated when it is needed. Another issue may arise due to data transfer costs that

should be revised carefully. To decrease these data transfer costs, some

cloud providers offer customers to send in physical hard drives, which are then

made accessible in the cloud environment. This is commonly used for initial data

imports or large backup archives.

Variations

Multiple clouds may be used for data storage to increase the availability of stored

data. A local cache can be used in the static environment to increase performance

and decrease data transfer costs. Furthermore, the static data handling component

may be configured to move data between the static and the elastic environment

based on heuristics, such as the number of accesses. Therefore, if a data element

is only accessed rarely, it is moved to the elastic cloud environment, where

access speed may be reduced. Data that is accessed more often is moved to the

static environment close to the remainder of the application. In such a setup, the

data handling component may also reason about the amount of free space in

the stateful application component and, thus, could only assign data to the elastic

Fig. 6.7 Hybrid data

residing in a static and

an elastic environment

312 6 Composite Cloud Application Patterns

cloud environment when space is running low. However, during such optimization

attempts data transfer costs billed by the cloud provider have to be considered

carefully. This variation also reduces the dependency on the availability of

the communication channel as the replication process can be delayed and, thus,

executed in an eventually consistent (126) manner.

Related Patterns
• Hybrid backend (317): if data in the elastic environment is accessed often

to perform complex processing on it, data transfer costs and access speed

limitations may be reduced by also hosting processing components in the elastic
environment. This is described by the hybrid backend pattern. To decide which

pattern to use, the timeliness of data access and data transfer costs should be

considered. However, this requires certain information about the behavior of the

application, which may be unknown and hard to estimate.

• Storage offerings (Sect. 3.5 on Page 109): storage offering patterns describe the

behavior of different storage options that may be used in the elastic environment

to host data. Data may be accessed from the static environment similar virtual

hard drives, as described by the block storage (110) pattern. A blob storage (112)
offers remote data access similar to file systems. Key-value storage (119) and

relational databases (115) offer table-centric data storage. These offerings may

display eventual consistency (126) or strict consistently (123), meaning that data

alterations become visible over time or immediately, respectively.

• Content distribution network (300): the variation of the hybrid data pattern

distributing data among two environments based on heuristics is similar to

a content distribution network. This pattern assures locality of data accessed

by a globally distributed user group.

Known Uses

Cloud storage is offered by many providers, such as Amazon Simple Storage

Service (S3) [132]. A provider offering automatic storage synchronization between

multiple clients and their cloud offering is Dropbox [223]. StorSimple [224] offers

cloud-based storage solutions that can be integrated with a company’s Storage Area

Network (SAN) [225] to seamlessly integrate enterprise storage with different

cloud storage offerings [226]. Another provider offering data storage is Gladinet

[227]. Varia [228] discusses different migration scenarios for existing applications

to Amazon Web Services (AWS) [138]. One of the covered topics is the migration

of large data objects to Amazon S3.

6.3 Hybrid Cloud Applications 313

http://dx.doi.org/10.1007/978-3-7091-1568-8_3

6.3.4 Hybrid Backup

Data is periodically extracted from an application to be archived in an

elastic cloud for disaster recovery purposes.

How can data be archived in a remote environment while the
remainder of the application is hosted in a static environment?

Context

Many applications are used by small and medium businesses which do not have the

required IT skills to host and maintain their own highly available infrastructure.

Especially, requirements regarding business resiliency – the ability to recover from

an error – and business continuity – the ability to operate during an error – are

challenging. Furthermore, there are laws and regulations making businesses

liable to archive data and keep it accessible for audits, often over very long

periods of time. In this scope, changes in the used hardware and software can be

problematic, if data is only readable using specific applications and operating

system versions that may become incompatible with newer hardware. Applications

could be used according to SaaS (55) to address these challenges. This would,

however, make the availability and user experience of the application dependent on

the performance of communication channel. Also, applications may not be avail-

able as SaaS or a company may not be able to use them due to other restricting

factors, such as laws and corporate regulations.

Solution

A distributed application (160) comprised of a user interface component (175),
processing component (180), data access component (188), and a stateful compo-
nent (168) is hosted in a local static environment of the company as seen in Fig. 6.8.

Data handled by the stateful component is periodically extracted and replicated to a
cloud storage offering.

314 6 Composite Cloud Application Patterns

Result

Instead of storing the data solely in the static environment, the data is archived

and replicated in the cloud environment. Commonly, this process should be

executed during times of low utilization, for example, overnight, to avoid an impact

on the performance of the rest of the application. If the data throughput of the

communication channel is insufficient for the amount of handled data, updates may

be shipped on physical storage media to many cloud providers. Legal regulations

may have to be considered when using a provider for data archiving purposes. To

cope with this challenge, encryption may be used to enable some privacy for the

remotely stored data, but this may decrease performance due to the additional

encryption and decryption overhead. In addition to storing data in the cloud

environment, the application required to access it may also be archived to ensure

accessibility of data in the future. For example, an IaaS (45) provider could be used
to archive an application hosted on a server in form of a virtual server image that

can later be deployed on the provider’s elastic infrastructure (87).

Variations

The decision how often data is replicated to the cloud environment is largely

influenced by the requirement how much data may be lost in case of a disaster,

i.e., if the backup process is executed nightly, data alterations performed during one

day may be lost. If the requirement is that no data may be lost, data in the

two environments must be kept in a consistent state. Therefore, the two

replicas should be updated at the same time while the communication channel is

available. The hybrid backup pattern considers the use of a hybrid cloud (75)

comprised of a private static environment and an elastic cloud. However, the

same approach can be followed to integrate two cloud environments. Especially,

multiple cloud environments of different providers may be used to increase the

availability of backed up data.

Fig. 6.8 Hybrid backup using an elastic cloud to archive data

6.3 Hybrid Cloud Applications 315

Related Patterns
• Hybrid data (311): the hybrid backup pattern replicates data between two

environments. If data should also be hosted exclusively in a cloud environment

or if it should be moved there when it is no longer accessed frequently, the

hybrid data pattern should be considered and can possibly be combined with

the hybrid backup pattern.

• Compliant data replication (231): if the data replica can be updated asynchro-

nously, using messages, the compliant data replication pattern describes

how these messages may be handled and can possibly be altered if not all of

the data stored in the static environment may be replicated to the cloud provider

or should be obfuscated during the process.

Known Uses

Archiving services complying with government regulations are a common example

for the outsourcing of data. Often, the size of handled data is growing significantly

over time and the stored information is accessed seldom. Another use case is

the storage of backups in the cloud, for example, offered by Crashplan [229] and

Acronis [230]. The above mentioned extraction of complete applications to virtual

servers hosted in an elastic infrastructure (87) is supported by different IaaS (45)

providers’ import tools, such as the Amazon’s VM Import/Export service [231]

or the VMware vCenter Converter [232]. Backup and recovery of servers using

Amazon AWS [138] is also covered by Elisha [233]. The backup of Oracle 11g

databases is described in a separate Amazon report [234]. For file-based backups,

Amazon offers a long-term data store called Amazon Glacier [235]. In contrast to

its other blob storage (112), Amazon Simple Storage Service (S3) [132] storage

costs are lower, but data retrieval times may be longer. Stored data may be listed

and viewed instantaneously and data retrieval has to be notified in advance,

thus, making the offering suitable for long-term backups.

316 6 Composite Cloud Application Patterns

6.3.5 Hybrid Backend

Backend functionality comprised of data-intensive processing and data

storage is experiencing varying workloads and is hosted in an elastic cloud

while the rest of an application is hosted in a static data center.

How can processing components that experience varying workload
and need access to large amounts of data be hosted in an elastic
environment while the remainder of the application is hosted in a
static environment?

Context

A distributed application (160) provides processing functionality that experiences

varying workload behavior. Mainly, static workload (26) has to be handled, but

some processing components experience periodic workload (29), unpredictable
workload (36), or continuously changing workload (40). Application components

providing the respective processing functionality experiencing varying work-

load should, therefore, be hosted in an elastic environment. However, these

components have to access large amounts of data during their execution making

them highly dependent on the availability and the timely access to such data.

During the operation of these processing components data, therefore, must be

made available to them in an efficient manner. We call the set of data-intensive

processing components and the data they rely upon backend functionality.

Solution

The processing components experiencing varying workloads are hosted in an

elastic cloud together with the data accessed during their operation. Figure 6.9

depicts a three-tier cloud application (294) implementing the hybrid backend
pattern. Processing components in the elastic cloud are triggered from the

static environment through asynchronous messages exchanged via message queues

provided by a message-oriented middleware (136). A data access component (188)
in the static environment ensures that data required by elastic processing

components is stored in storage offerings, commonly, a relational database
(115), key-value storage (119), or blob storage (112). The location where this

data is stored may then be passed to the elastic processing components during

their enactment via messages. Data that is not required by the backend functionality

may still be stored in stateful components (168) hosted in the static data center.

6.3 Hybrid Cloud Applications 317

Result

Due to this provisioning of application components in separate environments,

the processing component experiencing varying workload may benefit from the

elasticity of the cloud. Data accessed by it is either hosted only in the cloud

environment or replicated from the static environment. The style of replication

used in this case depends on the duration for which the elastic processing

components are active, how often they access the same data, and how much of

that data is also accessed from the static environment.

If the elastic processing components (180) are accessed rarely, storing the data in
the elastic environment at all times may be inefficient due to data storage costs.

Similar, if the elastic processing components handle a specific data element only

once, storing it in the elastic cloud may also be inefficient. The same is the case

if other application components access large amounts of the processed data, which

can results in high data transfer costs. Data transfer costs billed by the cloud

providers also have to be considered when making data available to the elastic

processing components. In this scope, some cloud providers allow customer to send

in physical hard drives, which are then made available in the cloud and sent them

back after the processing. In case the processing components are active for longer

durations, data may be synchronized continuously between both environments (see

related patterns).

Related Patterns
• Compliant data replication (231): the above mentioned replication of data

between the two environments is described by this pattern with a special

focus on automatic data alteration and obfuscation to respect possible legal or

corporate regulations.

Fig. 6.9 Hybrid backend using a static data center and an elastic cloud

318 6 Composite Cloud Application Patterns

• Hybrid processing (308): if only a small amount of data has to be passed to

the elastic processing component, it may be included in the message as described

by the hybrid processing pattern. This may especially be the case, if the data

on which the processing is conducted is offered and maintained by the cloud

provider, i.e., a provider for stock market quotes.

• Batch processing component (185): if the elastic processing component is

seldom required and results do not have to be available immediately, it may

additionally implement the batch processing component pattern to delay work-

load until processing becomes feasible, for example, due to changing resource

costs at a cloud provider.

Known Uses

An example for a hybrid backend implementation is the Automotive Simulation

Center Stuttgart (ASC-S) [236]. In this use case, processing components are hosted
on a community cloud (71) that is shared among multiple car manufacturers

for simulation purposes. Since the simulation workload of a company tends to

vary regarding the phase of car development projects, the use of elastic cloud

environments is feasible.

Another prominent example for processing data intensively in an elastic cloud

setting is the digitalization of the New York Times archives [31, 32] to make

articles publicly searchable online [33]. We cover this example in greater in the

section for once-in-a-lifetime workload (33) describing the workload it generated

and the challenges arising from this. Varia [228] covers how applications may be

migrated to Amazon Web Services (AWS) [138]. Especially, he points to detailed

use cases on backend functionality [237] and data-intensive batch-processing [238].

6.3 Hybrid Cloud Applications 319

6.3.6 Hybrid Application Functions

Some application functionality provided by user interfaces, processing, and

data handling is experiencing varying workload and is hosted in an elastic

cloud while other application functionality of the same type is hosted in a

static environment.

How can arbitrary functionality of an application be distributed
among static data centers and elastic clouds best matching its
requirements?

Context

Application components comprising a distributed application (160) experience

varying workloads on all layers of the application stack: user interface components
(175), processing components (180), and data access components (188). All of

these components provide functionality to the user group of the application, but this

user group accesses functionality differently. Some functions are accessed equally

at all times resulting in static workload (26). Other functions may

experience periodic workload (29), unpredictable workload (36), or continuously
changing workload (40). While distribution of application components, which this

functionality, among different runtime environments would be beneficial to

best match workload requirements, components have to be integrated to provide a

holistic and seamless user experience. In addition to the workload requirements

other issues, such as legal and corporate regulations or requirements on security,

privacy, and trust may limit the environments to which an application component

may be provisioned.

Solution

Application components are grouped regarding similar requirements and are

deployed into best fitting environments as shown in Fig. 6.10. Interdependencies

between the components are reduced by exchanging data using asynchronous

messaging to ensure loose coupling (156). Depending on the accessed function, a

load balancer redirects user accesses to the different environments seamlessly.

320 6 Composite Cloud Application Patterns

Result

Components with similar requirements on elasticity are assigned to the best

fitting environments. Regulations and requirements regarding privacy, security,

and trust are also considered in this decision. It has to be assured that the application

components in the static environment do not influence the components in the elastic

environment. This would reduce the beneficial effects of the elastic environments,

because dependencies may reduce the ability of the elastic application components

to scale out. Influences of application components hosted in different environments

are reduced by using loose coupling (156) and eventual consistency (126) of data

replicated between the environments. Therefore, communications between appli-

cation components across environments boundaries are asynchronous and the state

of the same data elements may differ in the environments. Replication of databases

residing in different environments should either rely on messaging to propagate

updates or should be handled by batch updates that are executed only at certain

times. Especially, these concepts enable applications in different environments to

be scaled independently. Synchronous access from static environments to the

elastic environments may be acceptable, if the elastic environments can scale out

to handle the possible workload that may be generated from the static environment.

To provide a homogeneous user experience, user accesses are routed to different

application components regarding the accessed function.

Fig. 6.10 Hybrid UI, processing, and data deployment

6.3 Hybrid Cloud Applications 321

Variations

In Fig. 6.10, the load balancer handling the assignment of user accesses to different

environments is hosted in the elastic environment. As a variation, it may also be

hosted in the static environment. However, in this case it has to be ensured that it

can scale well enough, i.e., that it can handle significantly large enough number of

application component instances to which accesses are assigned. In the scope of

multi-tenant applications, described by multi-tenancy patterns (see Sect. 4.4 on

Page 208), the requirements of tenants may be different regarding the hosting of

application components to different environments. If this is the case, application

components may be provisioned in both environments to reflect the requirements of

different tenants. Access to components may then be routed differently for every

tenant.

Related Patterns
• Message-oriented middleware (136): the desired loose coupling between

the environments is enabled by exchanging asynchronous messages through

message queues. These are provided by an intermediary, the message-oriented
middleware to make communication partners independent regarding each

other’s location, availability, and data format.

• Hybrid processing (308) and hybrid data (311): these patterns describe in detail

how processing components and data components residing in different

environments can be integrated.

• Compliant data replication (231): this pattern describes how data may be

replicated between different environments while respecting different levels of

privacy, security, and trust using data omission and obfuscation.

Known Uses

Online shops and travel booking sites use elastic environments to handle catalogs of

items, fights, hotel info etc. These catalogs can be queried by many users and are

scaled according to the current load. In case a booking or buy takes place, the user is

redirected to a static environment or a specific cloud provider handling money

transfers that also offers the required security.

322 6 Composite Cloud Application Patterns

http://dx.doi.org/10.1007/978-3-7091-1568-8_4

6.3.7 Hybrid Multimedia Web Application

Website content is largely provided from a static environment. Multimedia

files that cannot be cached efficiently are provided from a large distributed

elastic environment for high-performance access.

www
How can non-cacheable content be integrated efficiently in a website
that is accessed by a large globally distributed user group?

Context

A distributed application (160) provides a website accessed by a large globally

distributed user group. While most of the website is comprised of static content,

there is also a significant amount of multimedia content, such as videos or music

that has to be streamed to users. The static textual content and images can be cached

efficiently by cache servers on the Internet [239], the multimedia files are streamed

directly to the clients and, thus, are provided from the application.

Solution

The cacheable website content is hosted in a static environment from where it is

accessed by users as depicted in Fig. 6.11. It is cached by the users’ browser

software and by intermediary cache servers. The streaming content is provided by

an elastic cloud environment where it is accessed from the application’s user
interface component (175). Effectively, the static content is provided to users’

client software and in this static content, the multimedia content is referenced.

Retrieval of this streaming content is often handled directly by the users’ browser

software. Therefore, many application scenarios do not require direct accesses

between the application components hosted in the static environment and the

streaming content hosted in the elastic environment as the retrieval of data is

handled by the client application.

Result

The content that can be cached efficiently does not require the elasticity of a cloud

environment as it can be cached elsewhere. It is, therefore, provided by a static

infrastructure. The streaming content is only referenced in the cacheable content

6.3 Hybrid Cloud Applications 323

and can often be retrieved directly from client applications. For example, a Web

browser of a user is provided with a cached Web site that references multimedia

content hosted in the elastic cloud. This multimedia content may then be retrieved

directly from the Web browser without any interaction with the hybrid multimedia
web application. A data access component may be hosted in the elastic environment

to encapsulate the data access and to provide an easier interface to the user interface
component (175) than the storage offerings provide themselves. If the user group

accessing the application is globally distributed, the content may further be

replicated to various geographic regions using a content distribution network (300).

Variations

A hybrid multimedia web application may also use two elastic environments,

for example, a private cloud (66) and a public cloud (62) specialized in streaming

multimedia content. The decision to use a specific environment is, thus, largely

based on its geographic location and its capabilities to stream content efficiently.

Related Patterns
• Content distribution network (300): as mentioned above, a content distribution

network may be used to globally replicate streaming content in order to serve

a globally distributed user group.

• Hybrid application functions (320): in case of a hybrid multimedia web
application, content and application components are assigned to a hosting

environment based on the type of data they handle and provide to users. The

hybrid application functions (320) pattern on the other hand distributes applica-

tion components based on the functionality they provide and the security

assurances required by them as well as the handled data.

Fig. 6.11 Hybrid multimedia web application residing in an elastic cloud and a static data center

324 6 Composite Cloud Application Patterns

Known Uses

The separation of multimedia content from other website content is commonly used

in website development. Baron et al. [240] cover different storage solutions based

on Amazon storage offerings. One of them considers a web-based SaaS (55)

application. The authors describe how such an application should use key-value
storage (119) and relational databases (115) for table-centric data and blob storage
(112) for the integration of large multimedia content. Varia [228] covers applica-

tion migration to Amazon Web Services (AWS) [138]. Especially, he describes

how a web application may be migrated fully or partially to Amazon’s cloud [241].

6.3 Hybrid Cloud Applications 325

6.3.8 Hybrid Development Environment

A production runtime environment is replicated and mocked in an elastic

environment where new applications can be developed and tested.

How can an application use different computing environments
during its development, test, and production stages?

Context

Applications have very different requirements on the runtime environment during

their development, test, and production phase. During development, hardware

requirements are often uncertain, so hardware resources should be flexible to extend

resources if necessary. During the test phase, diverse test systems may be needed to

verify the proper functioning of the application on different operating systems or

when being accessed using different client software, i.e., different browsers. Large

numbers of resources may be required during development and test, for example, to

build the application and to perform load tests. During the productive use other

factors, such as security and availability may be of greater importance than resource

flexibility. These requirements make it desirable to use an elastic environment, for

example, a public cloud (62) for application development when requirements on

availability, privacy, security, and trust are low, but resources are required

dynamically. To use different environments and to move developed applications

efficiently, multiple conditions should be met. First, packaging formats of migrated

application components, for example, virtual servers have to be compatible or

convertible. Second, an application should find similar runtime conditions in each

environment to ensure that adjustments to the application are minimal upon trans-

fer. Also, this similarity ensures that test results regarding the application behavior

found in the development and test environments are likely to be similar in other

environments.

Solution

The production environment of the application is simulated in the development and

test environment through the use of equivalent addressing, similar mocking data,

and equivalent functionality provided by the environment as shown in Fig. 6.12. An

elastic infrastructure (87) or an elastic platform (91) may be used. Migration of

326 6 Composite Cloud Application Patterns

developed applications is ensured through transformation of application

components or compatibility of runtimes. In scope of an elastic infrastructure,
this migration could happen on the level of virtual server images. In scope of an

elastic platform, application component packages could be moved. Some testing

resources are provided exclusively in the development environment to verify

the application behavior under different circumstances. These could also be

provided using an elastic infrastructure or elastic platform. For example, multiple

virtual server images containing different operating systems and browser software

could be provided to flexibly test a developed website.

Result

Hybrid development environments display three essential benefits. First, they can be
easily provisioned initially. Second, resources used by the environment can be

increased flexibly. And third, diverse test clients can be provided on-demand.

Development, test, and production use of the application are performed in the

most suitable environments as depicted in Fig. 6.12. Runtime functionality in the

development environment should be based on the same implementation and

middleware software that is used productively. This functionality subsumes, for

example, domain name servers (DNS), message queuing systems, an enterprise

service bus, authentication etc. These services may be scaled automatically by

the development environment, for example, to ensure minimal influences on

load tests. As distributed applications (160) are hard to debug, the development

environment could offer special interfaces to the development platform services

and could provide debug information to the developer [10, 146].

It is important, that the development environment offers similar functionality as

the productive environment and also contains similar test data, such as user

accounts, data that is queried by the application etc. A subset of productive data

can either be replicated to achieve this or dummy data can used to mimics the

behavior of the productive systems regarding the amount of data returned by

component
provisioning

data
replica�on

Mocking
Components

Test
Components

Produc�onDevelopment & Test

Test
Clients

Elas�c
Infrastructure

Elas�c
Pla�orm

Elas�c
Infrastructure

Elas�c
Pla�orm

Fig. 6.12 Hybrid development environment and its integration with a production environment

6.3 Hybrid Cloud Applications 327

services, the complexity of this data etc. The tests performed in the development

environment are often influenced significantly by the sets of test data. Additional to

a similar runtime environment, application components to be developed should be

mimicked by specific test components as well. A developer may use this function-

ality to test an application even if certain parts are still being developed. This

approach especially useful, if development of application components is distributed

among several development teams.

The runtime behavior of the application can be estimated in the development

environment by dynamically changing hardware specification and measuring

performance. However, final knowledge about the required hardware capabilities

may differ, because performance figures can be obfuscated by hardware virtuali-

zation and other development environment users sharing the environment.

Especially, other virtual servers that share the same physical hardware as the tested

application may influence the outcome of load tests.

Variations

There are two approaches to migrate a developed application to the runtime

environments. In case an installable application is the desired outcome of the

development process, it has to be built in the development environment and is

then installed in the productive environment as any other application. However,

if the application is developed to contain a certain state, it could be migrated

completely to the productive environment. An example for the latter case is a

content management systems (CMS) provisioned in the development environment.

Different editors use this system to create a website. After development, this

website needs to be migrated to a productive environment. In case of migration,

the lowest layer of the application stack that is not available in the productive

environment forms the migration point. If the website of the above example shall be

migrated to a PaaS (49) production environment, only the created websites, config-

uration files, database tables etc. are migrated. If the productive environment is an

IaaS (45) cloud, the complete CMS software and operating systems could be

migrated as a virtual server.

Related Patterns
• Two-tier cloud application (290) and three-tier cloud application (294): the

componentized architecture of these applications makes them very suitable to

be created in a hybrid development environment.
• Compliant data replication (231) and hybrid data (311): these two patterns

describe how data may be distributed and replicated between two hosting

environments. Compliant data replication has an additional focus on the alter-

ation of data during this replication to meet privacy, security, and trust

regulations. The same approach may be employed in scope of the hybrid

328 6 Composite Cloud Application Patterns

development environment to replicate a smaller subset of productively used data

to a hybrid development environment. During this replication, data may possibly

be obfuscated.

• Application component proxy (228): under certain conditions, some productively

used application components may be included in tests performed in the

hybrid development environment. Since these application components are used

productively, access to them is, however, likely to be restricted. The application
component proxy pattern describes a solution to make them accessible in a

different environment nevertheless.

Known Uses

Windows Azure [52] natively supports the integration of a development

environment running locally on a developer’s machine. Developed applications

can be executed in this local environment and are afterwards deployed to Windows

Azure. After this initial deployment, Windows Azure differentiates between

a staging and production phase for deployed application components [242].

Adjustments to application components are made to their staging version, allowing

them to be tested in the Azure environment. Then, an immediate switch can be

initialized between the productively used application components and those in the

staging phase.

CloudBees [46] is a product aiming at the easy development environment setup

and flexible resource use. The provider offers ready-to-use development, build, and

test environments to customers that can be reserved using a self-service portal.

LoadUI [243] is a load test tool that can initiate various requests to an application. It

integrates with Amazon EC2 [244] and other elastic infrastructures (87) to simulate

a larger number of globally distributed clients. T-Systems provides virtual servers

to company-internal website developers containing various browser and operating

system configuration to test various clients.

6.3 Hybrid Cloud Applications 329

Impact of Cloud Computing Properties 7

In Chap. 1, we introduced the basic principles of cloud computing, on-demand self-

service, broad network access, pay-per-use, resource pooling and rapid elasticity. In

Chaps. 2 and 3, we used a pattern format to describe workloads experienced by

cloud applications, the hosting environments they use, and the cloud-specific

properties of different cloud offerings in an abstract, vendor-neutral view.

Chapter 4 covered patterns on how to deal with these properties in application

architectures followed by best practices for managing cloud applications in Chap. 5.

Chapter 6 covered compositions of the patterns described in previous chapters to

create cloud applications.

Readers are now familiar with the principles and the properties of cloud

offerings making cloud computing different from traditional computing. However,

we have not explicitly reviewed how the cloud computing properties defined in

Sect. 1.1 on Page 3 that are displayed cloud offerings influence the behavior of

applications built on top of them on different levels of the application stack

introduced in Sect. 2.3 on Page 42. Especially, we have not explicitly discussed

how these properties of lower levels of the stack can be mitigated on higher levels

so that an application can, for example, display required properties to its users and

customers without necessarily requiring the same properties to be displayed at the

middleware or infrastructure level. In this chapter, we discuss properties of cloud

offerings that can be changed through application design and cloud-specific

properties that cannot be mitigated within applications. As a result some properties

can be changed and some propagate up to the business level where they have impact

on how applications support the business processes and, thus, these properties have

impact on the business itself. We will see that it is often unnecessary to mitigate

cloud-specific properties on the application level. This is the case, as the impact on

the business is less profound than it may seem at first glance.

In this chapter we examine more closely the impact that the cloud-specific

properties of cloud offerings have on the levels of the application stack that build

All figures published with kind permission of # The Authors 2014. See list of figures.

C. Fehling et al., Cloud Computing Patterns,
DOI 10.1007/978-3-7091-1568-8_7, # Springer-Verlag Wien 2014

331

http://dx.doi.org/10.1007/978-3-7091-1568-8_1
http://dx.doi.org/10.1007/978-3-7091-1568-8_2
http://dx.doi.org/10.1007/978-3-7091-1568-8_3
http://dx.doi.org/10.1007/978-3-7091-1568-8_4
http://dx.doi.org/10.1007/978-3-7091-1568-8_5
http://dx.doi.org/10.1007/978-3-7091-1568-8_6
http://dx.doi.org/10.1007/978-3-7091-1568-8_1
http://dx.doi.org/10.1007/978-3-7091-1568-8_2

upon them. We do so by more closely inspecting the properties that are assumed

and expressed by the patterns introduced in the chapters before.

Knowing the impacts of these properties and how to mitigate them is important

for a range of scenarios:

• Selecting the right cloud provider. In this scenario, knowing the impacts of

properties abstracted by the patterns enables customers to classify cloud providers

and select the right one based on the business needs. Business needs can be

mapped to cloud properties that cannot be changed and application architectural

patterns can be evaluated to mitigate other properties to support the business needs.

• Building a cloud infrastructure or platform. In the private cloud (66) scenario
knowing the impacts that are produced when selecting different implementation

patterns will steer private cloud (66) providers to offer the right selection of

infrastructures and platforms.

• Rethink business requirements. In case a cloud provider offers significantly

lower prices while assuring only certain properties that do not directly meet

business needs, it may be beneficial to rethink the impact these properties have

on the business and if it is feasible to live with them.

• Build cloud native applications. Knowing the impact of properties on the

infrastructure and platform levels and how to mitigate them on the application

level enables application architects and developers to build cloud-native

applications that make use of the full potential of the underlying cloud offerings

by respecting offering properties in their architecture.

7.1 Cloud Computing Properties on Levels of the Application
Stack

Having introduced patterns as a vehicle to describe the properties of cloud offerings

and how to deal with them in application architectures, we can now use these

patterns to deal with the cloud computing properties on all levels of the application

stack. When using a cloud offering it important to understand the key properties that

influence the upper levels of the application stack depending on the properties of the

chosen lower level implementation. In software engineering for custom on-premise

applications, requirements are traditionally propagated top-down the application

stack as shown in Fig. 7.1.

During this propagation of requirements the requirements of a business usage

scenario and its business processes are iteratively refined into application software

requirements, middleware requirements and infrastructure requirements. In IT

environments, where the whole application stack is fully controlled by the software

architect and can, thus, be created in a custom fashion for each application, this

approach leads to middleware and infrastructure layers that are very unique and

diverse but well suited for the respective applications as they are optimized to meet

the specific requirements of the business usage scenario.

In the cloud, however, when using existing *-as-a-Service offerings this

approach tends to be less successful, as the properties of the cloud offerings to be

used can typically not be modified as freely as in an on-premise usage scenario.

332 7 Impact of Cloud Computing Properties

This is the case as certain properties of a cloud offering are determined by the

design of the offering by the provider. Thus, the homogenization of IT resources

aspect of a cloud offering discussed on Page 4 in Sect. 1.1 comes into play here. The

task of the software architect is now no longer to specify the requirements for a

middleware or infrastructure top-down but to match the application requirements

with the properties of the available cloud offerings.

Therefore, the force arises to take a more bottom-up-oriented approach into

account, which includes identifying the cloud offerings to use that best fit the

requirements imposed by the application. Following this approach, the application

architecture may then compensate for cloud offerings not fulfilling the

requirements. However, not all properties of cloud offerings may be compensated.

We, therefore, differentiate between compensatable and pass-through properties

and requirements.

Compensable Properties

Compensable properties are properties that can be mitigated on a given level by

applying adequate counter-measures, such as designing the respective level to deal

with the property. With compensable properties the cloud customer has to decide

whether the required countermeasures, especially, their implementation complexity

justify the benefits obtained through selecting the cloud provider. Compensable

properties of lower-level cloud offerings may then be adjusted to requirements of

the cloud application on higher levels of the application stack by following certain

architectural styles that are captured in the patterns by previous chapters of this

book. Examples for such compensable properties are:

• Availability: if single resources of a cloud provider do not assure an acceptable

availability-level, the application can incorporate redundancies and failure-

detection in its architecture to cope with this property.

Physical Hardware

Operating Systems

Middleware

Application Software

Virtual Hardware

Business Processes

SaaS

PaaS

IaaS

In
flu

en
ce

d
by

 P
ro

pe
r�

es
 o

n
Lo

w
er

 L
ev

el
s

Im
po

se
sR

eq
ui

re
m

en
ts

 o
n

Lo
w

er
 L

ev
el

s

Fig. 7.1 Propagation of requirements in the application stack

7.1 Cloud Computing Properties on Levels of the Application Stack 333

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

• Single-tenancy: this property describes that a cloud middleware component is

provided exclusively to one customer. However, despite this property, this

component can still be used to build an application that is provided to multiple

customers. The single-tenancy property can, therefore, be compensated for in the

application by assuring appropriate isolation means between tenants in its

architecture.

• Privacy: if a cloud resource can be accessed publicly or the cloud provider

cannot be trusted to keep data save, encryption and data obfuscation can be used

to meet higher-privacy requirements of applications.

Pass-Through Properties

Other properties, however, cannot be compensated in the application architecture

and, therefore, pass-through the application stack unchanged. Thus, pass-through

properties always “infect” all upper levels and trigger upwards all levels of the

application. These properties subsume the following examples:

• Location: the physical location where a resource is hosted is restricted by the

data centers maintained by a provider. While the customer may be able to choose

to provision resources in certain number of geographic regions, these are always

fixed by the provider.

• Legal issues: laws according to which the resources are offered often depend on
the country in which a cloud provider resides and cannot be changed by the

application.

• Multi-tenancy: if a resource is shared by multiple customers, they cannot

provide functionality that guarantees a dedicated environment if this is required.

7.1.1 Downwards-Propagation of Requirements

Applications are built to support business functionality and capabilities that are

used in business processes supporting the business model of an enterprise. The

business model and subsequently the business processes impose requirements on

the applications that implement them. Further requirements may be imposed by

business ethics or regulatory bodies. Requirements imposed on an application

traverse down through all the levels in the application stack of this application,

from the application software level, through the middleware level down to the

infrastructure, networks and datacenters. In a cloud usage scenario, i.e., when one

or more of the levels in the application stack are obtained from a cloud provider, the

offering of the cloud provider must comply with the necessary requirements

imposed by the downward-propagation of the requirements on that particular

level. For example, a regulatory requirement may be to disallow processing of

customer-sensitive data outside of Europe. This requirement will traverse down to

334 7 Impact of Cloud Computing Properties

the infrastructure level and ultimately becomes a requirement for an IaaS (45) cloud
provider, if application hosting is to be outsourced to such a provider.

In a traditional scenario using an on-premise data center where full control over

the application stack is given, the requirements on a specific level translate into the

selection criteria for the required components on that level that fulfill these

requirements. In a cloud usage scenario, where control of a part of the application

stack is outsourced to a cloud provider it is unfeasible to assume that all

requirements on that level are always fulfilled by the cloud provider, because it

would significantly limit the number of usable providers. Thus, it is important to

check if the properties of the cloud provider fulfill the requirements directly or if

they can be mitigated in the application architecture. To understand whether a

lacking fulfillment of requirements automatically leads to a dismissal of a provider,

we need to understand how properties of lower levels of the application stack

propagate upwards.

7.1.2 Upwards-Propagation of Properties

Similar to the downward propagation of requirements from the business and

regulatory levels down to the lower levels of the application stack, properties of

the lower levels can propagate upwards. It is important for the application of the

patterns discussed in this book to understand the implications of the upwards-

propagation of properties in a cloud usage context. The cloud usage context in

which we operate in this book implicitly assumes that some parts of the application

are hosted by a cloud provider. As the cloud provider’s business model is centered

on resource sharing and, thus, homogenization of IT resources (see Page 4 in

Sect. 1.1), the properties of the cloud provider and thus the supported requirements

will be fixed or configurable in a very narrow means. Thus, in some cases upper

levels in the application stack will be confronted by properties of lower levels that

are non-compliant to the requirements imposed on them from their upper levels. In

this case properties need to be compensated on that level.

7.1.3 Meet-in-the-Middle for Cloud Properties and Requirements

We argue that business requirements and cloud properties have to meet in the
middle to obtain an optimal selection of cloud offerings. To meet requirements,

pass-through properties should be mapped directly from the top down, while

compensable properties have to be carefully considered in the architecture of the

cloud application from the bottom up. In this chapter we use the cloud computing

patterns to describe both, the properties of cloud offerings as well as requirements

imposed by customers using these cloud offerings. We then also use the patterns to

describe how to mitigate properties in upper levels of the application stack that are

imposed on them by the lower levels when going bottom-up.

7.1 Cloud Computing Properties on Levels of the Application Stack 335

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

7.2 Impact of Core Cloud Properties

In the following we describe the impact of selected cloud properties on the different

levels of the application stack and derive suitable mitigation strategies where

required. We also describe how these cloud properties influence the application

level and business process level when they are not mitigated.

7.2.1 Pay-Per-Use

Pay per use is one of the main requirements that is imposed by cloud consumers on

cloud providers on all levels of the stack. From a cloud consumer’s view the pay-

per-use paradigm ensures that only those resources that are actually used result in

costs. The importance of choosing the right granularity of payment units that

correspond to a cloud offering is given by the fact that the implementation of that

offering should be a black box to the cloud consumer. This is important for the

cloud consumer and the cloud provider.

For the cloud consumer this gives an immediate control over the expected costs

related to the business objects relevant on the respective level. Thus the cloud

consumer does not need to be aware of details of the technical implementation to

compute regardless of technical implementation.

For the cloud provider the right granularity of the payment unit and, thus, the

black-box nature of the cloud offerings allows optimizing the offering internally

without having to reveal details to the consumer and thus can benefit from

economies of scale without having to reveal these economies to the cloud

consumer.

Impact of Choosing the Right Payment Unit

Depending on the level of the stack, the units on which pay-per-use schemes are

based are different. As a rule of thumb they should reflect the business objects

processed on that level. Thus, on the business process level, the payment unit

should be the number of process instances executed which corresponds for example

to the core business object created during the business process. For example, if the

business process supported by a cloud offering is a payroll processing process, the

unit of payment should be the payroll and the payment scheme should be for

example the number of payrolls processed. On the software application level, a

suitable payment unit is the number of users of the application that concurrently use

a certain functionality. On the middleware level, the payment unit depends on the

platform service offered. In case of a processing platform the price model could be

the amount of processed requests. In case of a messaging platform the number of

messages exchanged and in a storage platform, the number of records stored. On the

infrastructure level, the payment unit is the number of computing resources used

(i.e. CPU time, bandwidth, or storage capacity).

336 7 Impact of Cloud Computing Properties

It is important that the unit of payment reflects the level on which the cloud

offering is made. In the payroll example the “number of transactions” or “amount of

CPU time used” are technical units that are at lower levels than the offering and,

thus, are rather poor candidates for a payment unit as they violate the black box

principle and reveal implementation details of the offering that the customer should

not be concerned about.

The most important impact of pay-per-use on all levels of the stack is the require-

ment for rapid elasticity towards the cloud provider. Without elasticity pay per use

models are not convenient to achieve by cloud providers. Elasticity enables the

provider to adjust the consumed resources according to the load requested by the

cloud consumer and assign unused resources to other consumers to improve utilization.

7.2.2 Rapid Elasticity

Elasticity is often provided by an elastic infrastructure (87) or an elastic platform
(91). To be able to offer a pay-per-use pricing scheme, elasticity must be

propagated by the cloud offerings to the application level and business process

level. The level of required elasticity for an elastic infrastructure or elastic platform

as shown in Fig. 7.2 is determined by the workload pattern experienced by an

application or a business process. Thus, before defining the elasticity requirements

for lower levels, it makes sense to capture the requirements for elasticity on the

business level. Depending on the given workload for a business process or applica-

tion the elasticity level can be determined. Taking this elasticity level into account

requirements on the underlying platforms and infrastructures can be stated. Espe-

cially with static workload (26), elasticity of a cloud environment may not be

needed at all.

Fig. 7.3 shows elasticity on the different levels of the application stack from a

customer and a provider view. The customer requires the software, platform or

infrastructure to behave in an elastic manner, providing exactly the number of

resources required. The provider, on the other hand, seeks to balance the load of the

Fig. 7.2 Workloads and elasticity requirements

7.2 Impact of Core Cloud Properties 337

different applications on a platform or infrastructure or the different tenants of a

software, so that the whole system more or less experiences static workload that

best utilizes the resources assigned to the customer(s) by the provider.

Impact of Elasticity on Infrastructure Level

On the infrastructure level, elasticity is achieved by adjusting the infrastructure

resources, i.e., power of central processing units (CPU), memory, or hard drive

storage to the requirements expressed by the customer. In cloud environments the

granularity of adjustment is mostly the virtual server, i.e. to add more processing

power or memory a customer has to start new virtual servers, to remove it, the

customer has to shutdown virtual servers. In private clouds (66) build on common

hypervisors (101) it is often possible to enlarge or shrink virtual servers to a certain
extent, by assigning more or less CPU power or memory to them. However,

eventually it will be necessary to start and stop whole machines to achieve elasticity

on a large scale. Thus, infrastructure providers implement the elastic platform (91)

pattern to cope with the required elasticity on the infrastructure level. The impact of

building on top of an elastic infrastructure is that the upper levels (platform,

application and business) must cope with horizontal scalability described on

Page 6 in Sect. 1.2.

Impact of Elasticity on Platform Level

On the middleware level offered as PaaS (49), it should be transparent to the

customer how elasticity is handled on the lower levels of the application stack.

Physical Hardware

Operating Systems

Middleware

Application Software

Virtual Hardware

Business Processes

IaaS PaaS SaaS

Pr
ov

id
er

 V
ie

w

Cu
st

om
er

 V
ie

w

Fig. 7.3 Elasticity on different levels of the stack

338 7 Impact of Cloud Computing Properties

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

To cope with this elasticity PaaS (49) providers implement the elastic platform (91)

pattern. The difference between an elastic platform (91) and an elastic infrastruc-
ture (87) regarding the elasticity is that the elastic platform commonly shares

resources on the middleware level whereas the elastic infrastructure only shares

resources up to the physical hardware level.

The sharing of resources on the middleware level allows the applications built on

the elastic platform to abstract from the virtual servers that are below it. This has

two advantages: First, application developers do not have to deal with elastically by

provisioning and decommissioning virtual servers and deploying their applications

on top of them as well as balancing the load across these servers. Second, PaaS
providers can host multiple applications from different customers on the same

elastic platform and can dynamically assign processing power to these applications

as requested. Providers, thus, balance the load of all applications hosted by the

offering without having to start and stop servers when the load of one application

changes. The elasticity is transparent to the customer, however to understand why

elastic platforms of different types often have certain constraints compared to the

middleware products found in on-premise usage scenarios it is beneficial to high-

light how these platforms are implemented:

When realizing an elastic platform, two general implementation choices are

possible:

• Elastic platform using non-elastic infrastructure

• Elastic platform using elastic infrastructure

Realizing an elastic platform on a non-elastic infrastructure essentially limits the

elasticity of the platform to the use of the maximum resources provided by the

infrastructure. However, in case of workload peaks extending the maximum

resources that the elastic platform can use, additional resources cannot be assigned,

thus, when it is required to deal with such peaks it is advisable to build the elastic
platform (91) on top of an elastic infrastructure (87) where resources of the elastic
infrastructure can be assigned to the elastic platform if needed.

Impact of Elastic Infrastructures and Platforms on the Application Level

The impact of an elastic platform (91) for application developers is that they have to

design their application in a way that it can benefit from the elasticity of the

platform. This is true regardless of the type of the platform. In essence this means

that the application must be able to scale horizontally with the platform. The

requirement to be able to scale horizontally is due to the fact that ultimately, the

elastic platform will automatically distribute the application to multiple instances of

the middleware installed on multiple virtual servers and will balance the load over

these instances.

The same holds true for application components build on top of an elastic
infrastructure (87) as the application components have to support the simultaneous

deployment on multiple virtual servers and the balancing of load across these

servers. Thus, applications built on top of elastic platforms (91) and elastic
infrastructures have to be built for horizontal scalability: in case of a processing

7.2 Impact of Core Cloud Properties 339

application component, the platform will dynamically distribute requests to multi-

ple instances of the application components deployed on the underlying application

servers. Thus, the application component on such a platform should implement the

stateless component (171) pattern so that individual instances of the components

are independent from each other and requests can dynamically be distributed to

these instances. Therefore, elasticity and thus pay-per-use do not come for free.

Application architectures must carefully manage state to benefit from horizontal

up-scaling and down-scaling and, thus, efficient elasticity. In this scope, the stateful
component (168) and stateless component (171) patterns discuss how session
state – the state of client interaction with an application component and application
state – the data handled by the application can be managed by application

components or by storage offerings as discussed on Page 6 in Sect. 1.2.

Impact of Application Level Elasticity on the Business Level

Elasticity on the application level eventually impacts the business level. Similar to

the infrastructure level where infrastructure resources are eventually limited, appli-

cation resources on a higher level are eventually limited. This limitation can,

especially, be present in private cloud (66) scenarios, if only a small number of

applications share this environment. To realize maximum efficiency and minimal

overprovisioning of resources, the elasticity of the underlying applications must be

reflected in the business processes. Re-organization of business processes may

provide more efficient balancing of load across different applications at different

times. This leveling out of workload can prevent peak workloads on multiple

applications at the same time, which would require overprovisioning on lower

levels of the application stack. Cloud providers, therefore, often promote the

execution of business process and, thus, applications during times of low overall

demand by offering lower prices during those times while charging higher prices

during workload peak times.

For example, a payroll processing business process is executed at fixed times

before payrolls need to be sent out at the end of the month. During the rest of the

month the resources for payroll processing can be used to drive inventory manage-

ment. However, the inventory management business process is not available during

payroll processing times as this would require overprovisioning of resources to

accommodate simultaneous peak times.

7.2.3 Homogenization

Homogenization is one result of the resource pooling cloud property (see Page 4

in Sect. 1.1) that is essential to make any cloud environment economically feasible.

Resources can only be shared across multiple applications or tenants if these

applications or tenants require the same type of resource. Thus, homogenization

340 7 Impact of Cloud Computing Properties

http://dx.doi.org/10.1007/978-3-7091-1568-8_1
http://dx.doi.org/10.1007/978-3-7091-1568-8_1

of IT resources is of utmost importance and a side effect of the cloud computing

properties. Depending on the level in the application stack different types of

resources should be standardized for all users of the offering to ensure IT resource

homogenization. These standardization efforts are not de jure industry

standardization attempts undertaken by many companies, but are performed within

one company establishing a private cloud (66), a limited number of companies

sharing a community cloud (71), or by a public cloud (62) provider enforcing a

certain standard on its customers.

Impact of Standardization on the Infrastructure Level (IaaS)

On the infrastructure level, the infrastructure, such as the type of (virtual) servers,

routers, storage and network connections and the underlying hardware and

datacenters are standardized. This enables hosted applications to share the

hypervisor, networks, storage and all lower levels. Thus, the infrastructure

components expose standardized interface in terms of their application program-

ming interfaces (API) as well as in terms of the supported IT resource types they

can host, i.e., virtual servers, storage, and networking that have to be used by the

upper levels.

Impact of Standardization on the Platform Level (PaaS)

On the platform level, the platform also provides an API to provision and decom-

mission hosted software artifacts depending to the type of runtimes (compute,

storage, messaging etc.) supported by the platform. Additionally, the deployment

artifacts (application components, record metadata, and queue definitions) must be

standardized. This standardization limits the possibilities of how applications can

be built compared to a non-standardized way of choosing middleware components.

Thus when selecting a cloud platform provider (or building a private cloud plat-

form), it is important to select a set of runtimes that are compliant with the existing

and/or intended system architectures in the enterprise.

Impact of Standardization on the Application Level (SaaS)

On the application level, SaaS (55) applications have to standardize how new users

and tenants are added, removed and how configuration data and content data can be

deployed for the application. SaaS applications also implicitly standardize the

functionality offered to their tenants. Common for all levels is that cloud providers

have to provide standardized functionality that is feasible for their intended

customers. From a customer’s point-of-view, this enforced standardization must

offer benefits (such as lower cost, faster time-to-market, managed maintenance. . .)
that outweigh the flexibility disadvantages of using a standardized offering.

7.2 Impact of Core Cloud Properties 341

Impact of Standardization on the Business Level

Standardization on the lower levels (especially on the application level) ultimately

affects the business level. Standardized cloud offerings on higher levels often are

limited in customization and, thus, offer less flexibility than home-grown or

specially-built applications. In case a standard on a certain level is unsuitable for

a cloud customer, this customer can move one level lower in the application stack

and implement the level that is not suitable him- or herself. For example, if a SaaS
(55) customer relationship management (CRM) offering is not flexible enough to

accommodate all the configuration requirements for a certain customer, this cus-

tomer can build a custom CRM on a PaaS (49) offering either from scratch or by

using COTS (commercial off the shelf) components. If the platform is unsuitable,

the customer can use a cloud infrastructure provider to install suitable middleware

on which he can build the CRM application. In this case standardization is pushed

down the stack resulting in more flexibility but increased effort.

Standardization and Enterprise Architecture Management

When selecting a suitable cloud provider on any of the levels it is insufficient to

only examine single applications. A detailed analysis of the application landscape

of an enterprise will result in a better assessment on what are the standardized

platform or infrastructure components that should be offered by an internal or

external cloud provider to be shared within a company. Going up the application

stack this assessment becomes more important as standardization higher up in the

stack is most efficient as synergies between applications are increased.

7.2.4 Resource Sharing/Multi-Tenancy

One fundamental property of any cloud offering is the underlying principle of

resource pooling or sharing as discussed on Page 4 in Sect. 1.1. Depending on the

position of the offering in the application stack, different resources are shared. One

property that enables resource sharing in commercial cloud offerings is multi-

tenancy. Any cloud offering that is provided to multiple customers must ensure

the isolation of these customers and, thus, implement multi-tenancy. In the (special)

case of a private cloud (66) different tenants can be, for example, different

departments of a company. Another special case are multiple components of the

same tenant on the same underlying cloud offering. In this case two scenarios exist:

• Multiple components share one tenant, i.e., they can access resources of each

other without being isolated.

• Multiple components of one tenant behave as if they were components of

different tenants and, thus, are isolated against each other.

342 7 Impact of Cloud Computing Properties

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

Impact of Resource Sharing on the Infrastructure Level

In case of IaaS (45) shared resources are the network, the datacenter, the physical

hardware its host operating system and the hypervisor (101). Multi-tenancy is

implemented in the hypervisor that must ensure that virtual servers of one tenant

cannot access the virtual servers of another tenant unless explicitly authorized. The

same must hold true for storage and network resources that must not be shared

among different tenants to ensure isolation.

Everything above the infrastructure level is not explicitly shared and, thus, not

isolated by the IaaS (45) offering. Fig. 7.4 shows that the levels up to the physical

servers managed by a hypervisor (101) implement the tenant-isolated component
(214) pattern, as they are shared among the different tenants but are multi-tenant

aware and, thus, isolated. Everything above the hypervisor (starting from the virtual

servers) then implements the dedicated component (218) pattern, i.e. each tenant

gets its own instance of virtual servers, storage, network etc. that they can use.

Note that it is explicitly allowed for one tenant to build a multi-tenant aware

platform or a multi-tenant aware application upon its resources obtained from an

infrastructure provider. Thus one tenant on the infrastructure level can host multiple

tenants again by applying isolation techniques on the upper levels.

Impact of Resource Sharing on the Platform Level

PaaS (49) takes resource sharing higher in the application stack than IaaS (45). In a
PaaS offering the operating system and middleware components are shared among

multiple tenants as shown in Fig. 7.4. Thus, they are implemented using the tenant-

Physical Hardware

Operating Systems

Middleware

Application Software

Virtual Hardware

Business Processes

IaaS PaaS SaaS
Dedicated

Hos�ng

Fig. 7.4 Resource sharing/multi-tenancy on different levels in the stack

7.2 Impact of Core Cloud Properties 343

isolated component (214) pattern. Everything above must then be implemented

using the dedicated component (218) pattern.
Artifacts deployed on the platform are run in so-called tenant-spaces that ensure

isolation of these artifacts against artifacts of other tenants. Tenant-spaces are a

virtual space that contains all artifacts of one tenant. Isolation again must be on the

access level as well as non-functional property level. That is if a provider ensures a

certain amount of requests per hour for one application of a tenant, other tenants

must not be able to reduce this number of requests by putting workload on their

applications.

Depending on the type of runtimes offered in a platform different tenant-spaces

that can host different artifacts have to exist:

• In a processing offering the underlying application server must ensure that

application components deployed on it do not interfere with other application

components of other tenants

• In a storage offering access to stored data must only be granted to the tenant to

which the tenant-space in which this data is stored, is assigned.

• In a communication offering, for example, one providing messaging access to

queues and topics can only be granted to authorized tenants.

Regarding load-balancing provided by the offering, rules must be separated and

isolated among tenants. Again, it is explicitly possible to build multi-tenant aware

applications in the tenant-space of one tenant on a platform. The application must

then assure proper isolation of tenants on the application level, i.e., it must imple-

ment the tenant-isolated component (214) pattern.
Using the tenant isolation of the platform level to build SaaS (55) applications

following the dedicated component (218) pattern is also possible. In this case

multiple instances of the application level can co-exist in the different tenant spaces

of the platform. On the one hand this behavior allows the SaaS application devel-

oper to reuse the tenant-isolation of the platform, on the other hand the components

must be duplicated for each tenant with the known limitations such as higher

resource consumption, higher update effort etc.

A mix-and-match of these two approaches, tenant-isolated components (214) in
one tenant space and dedicated components (218) in multiple tenant spaces is also

possible. An example for this approach is the common practice to run processing
components (180) implementing the dedicated component (218) pattern on virtual

servers and store their state on the storage offering implementing the tenant-
isolated component (214) pattern.

Impact of Resource Sharing on the Application Level

Resource sharing on the application (component) level is the most efficient way of

sharing resources, because it does not require the lower levels of the application stack

to be duplicated for each tenant. Thus, all tenants can share the same physical

hardware, hypervisor, virtual hardware (if existent), middleware and software

components. The impact on resource sharing on the application (component) level

344 7 Impact of Cloud Computing Properties

is that the relevant application (components) must be developed in a multi-tenant

enabled fashion, thus, they have to implement the tenant-isolated component (214)
pattern.

How multi-tenancy is realized for different application components heavily

depends on the type of application component. For databases, for example, different

techniques exist. From pushing down isolation to the database platform level by

setting up different database schemas or even databases for different tenants.

Another technique, where multi-tenancy is realized on the application level, is to

introduce a tenant-id field to tables and only allow tenants to create, retrieve, update

or delete data that is associated with their tenant-id. The tenant-isolated component
(214) pattern discusses these approaches in greater detail.

The required isolation for multi-tenancy on the application level can also be

pushed down the stack in case it is unfeasible to enable multi-tenancy on the

application level. The result is that the application level needs to be duplicated

for each tenant. Again, mix-and-match approaches are possible under such

conditions where some application components implement multi-tenancy them-

selves whereas others push it down to the lower (platform and infrastructure) levels.

Impact of Resource Sharing on the Business Level

On the business level the foundations for resource sharing often have to be laid.

Whether resource sharing is possible on lower levels or not, heavily depends on the

business requirements and accompanying regulations. The business level enables

resource sharing on lower levels, by identifying business processes that are

supported by the same common applications. On the business level it then has to

be identified who is responsible for the shared application. Often, a suitable

approach for resource sharing on the business process level is to share the processes

(or parts thereof) between different local business units, as they often share the

same supporting applications and the processes are implemented in a similar way.

Under such conditions, it may make sense to explore if application supporting the

business processes can be implemented using configurable tenant-isolated
components (214).

7.3 Impact of Other Common Cloud Offering Properties

Similar to the cloud computing properties introduced in Sect. 1.1 on Page 3 other

common properties of cloud offerings have impact on the levels of the application

stack that build upon such cloud offerings. In the following, we examine these

properties and their impact on levels building on top of them. These properties

immediately originate from the common cloud properties. They are often a result of

embracing cloud principles on provider side, however, they can also be found in

large-scale systems outside of cloud environments.

7.3 Impact of Other Common Cloud Offering Properties 345

http://dx.doi.org/10.1007/978-3-7091-1568-8_1

The properties we examine for their impact on higher levels are:

• Environment-based availability (98) commonly found in cloud computing infra-

structure offerings.

• Eventual consistency (126) commonly found in cloud storage platforms.

• At-least-once delivery (144) of message queues commonly found in cloud

communication offerings.

7.3.1 Environment-Based Availability

One success-factor of large-scale public IaaS clouds is often their reliance on

standard commodity hardware. The result of using standard commodity hardware

are lower infrastructure costs [64] but also lower service level agreements (SLA)

for individual nodes, i.e., hosted servers than with the service level assured by

expensive failsafe hardware that can guarantee availability of individual compute,

storage or communication nodes. Therefore, if the availability assurance of a

provider used on a lower level of the application stack is environment-based
availability (98), measures can be taken on higher levels of the application stack

to assure node-based availability (95) for IT resources hosted on that level. This

mitigation of availability assurances on different levels of the application stack is

depicted in Fig. 7.5.

Physical Hardware

Operating Systems

Middleware

Application Software

Virtual Hardware

Business Processes Mi�ga�on

Mi�ga�on

Mi�ga�on

Fig. 7.5 Mitigation of environment-based availability on higher levels of the application stack

346 7 Impact of Cloud Computing Properties

Impact of Environment-Based Availability on the Infrastructure Level

As a result some cloud providers that rely on standard commodity hardware and,

thus, implement the environment-based availability (98) pattern assure the avail-

ability of the whole environment and not individual (unreliable) nodes.

In the levels building on top of an infrastructure level with environment-based
availability (98), precautions need to be taken to mitigate the properties in case low

availability of individual nodes is not acceptable for the respective higher level.

Such precautions are covered in greater detail by the watchdog (260) and the

resiliency management process (283).

Impact of Environment-Based Availability on the Platform Level

Building an elastic platform (91) that guarantees node-based availability (95) for

platform nodes represented by (virtual) middleware (clusters) that offer the plat-

form runtimes requires intimate knowledge of the properties of the underlying

infrastructure. Such a platform requires either an underlying infrastructure with

node-based availability or the platform must ensure that the effects of the low

availability nodes in an infrastructure with environment-based availability are

mitigated in the platform.

Therefore, the platform has to monitor instances of provided middleware and

replace failing ones by implementing the watchdog (260) pattern. The resiliency
management process (283) handled by the watchdog is enabled by balancing

workload among multiple redundant middleware instances of using an elasticity
manager (250), elastic load balancer (254), or elastic queue (257). In case the

watchdog observes the failure of a middleware instance caused by the lack of

availability in one of the underlying infrastructure nodes it replaces the component

and possibly notifies the elastic load balancer (254) to remove that instance from

the balancing strategy.

Impact of Environment-Based Availability on the Application Level

When building a high-available application (component) on top of an offering

assuring environment-based availability (98) and thus using possibly unreliable

individual nodes as no node-based availability (95) is assured, the application

(component) must be built following a set of guidelines to achieve higher availabil-

ity in the upper levels of the application stack:

• Design for failure. Always assume that application components running on

infrastructure nodes or platforms assuring environment-based availability (98)

can fail at any time and will fail eventually. This can be handled by

implementing a watchdog (260) on the application level monitoring and

replacing application components.

7.3 Impact of Other Common Cloud Offering Properties 347

• Make use of elasticity. When designing applications that should run on an

infrastructure or platform assuring environment-based availability, incorporate
elasticity managers (250), elastic load balancers (254), or elastic queues (257)
in the design or follow the two-tier cloud application (290) or three-tier cloud
application (294) pattern. This enables the application to handle replacements of

failing application component more efficiently.

• Deploy stateless application components on unreliable nodes if possible.
Only deploy application components that follow the stateless component (171)
pattern on elastic platforms (91) or elastic infrastructures (87) with environ-
ment-based availability. This way you can use an elasticity manager (250), an
elastic load balancer (254), or an elastic queue (257) easily together with a

watchdog (260) to balance load over active instances of the application compo-

nent and replace failing instances automatically. In case a node and the

corresponding component fail, its work is lost and can be reassigned to another

working node.

• Use reliable means to store state. When dealing with stateless components
(171) hosted on unreliable infrastructure or platforms, the availability of state

information becomes even more important than with reliable nodes. As state is

completely held in the stateful components (168), these components must guar-

antee high availability. This can be achieved either by replicating state among

stateful components (168). Challenges in this scope regarding the consistency of
handled data are described by the strict consistency (123) and eventual consis-
tency (126) patterns. Ideally, a cloud application using an environment-based

elastic infrastructure (87) or elastic platform (91) use a provider-supplied

storage offering or communication offerings to handle state. For these offerings,

providers often assure a high availability for handled data, messages, etc.

• Use reliable communication. When distributing workload among unreliable

application components use a message-oriented middleware (136) or a storage

offering together with the transaction-based processor (201) or timeout-based
message processor (204) pattern. These patterns ensure that data is exchanged

and processed reliably through message queue or storage offerings, respectively.

Data manipulations are only persisted in reliable storage, if the message or data

element has been processed successfully. If a processor is unsuccessful, no data

is lost, but the processing task is assigned to a replacement.

Impact of Low Availability Applications on the Business Level

In case an application (component) does not follow the guidelines above and, thus,

fails this may have severe impact on the business processes using this application

(component). In some usage scenarios, this may be acceptable as the overhead of

producing a highly available application is not needed.

However, independently of the availability requirements for an application build

upon an elastic infrastructure (87) or elastic platform (91) assuring environment-
based availability (98) a provisioning of a replacement of the failed application

348 7 Impact of Cloud Computing Properties

components is necessary after the supporting infrastructure or platform nodes

failed. Thus, the application must be designed in a way that a restart is possible

which essentially means to sticking to all the guidelines above without the “make

use of elasticity” guidelines.

In other usage scenarios, failure of applications can have severe and inacceptable

impact on the business. Thus, from a business point of view it is important to

mitigate the effects that availability assurances of a cloud provider on the upper

levels of the application stack with regard to availability. As the guidelines for

making use of elasticity are quite similar with the guidelines for mitigating low-

availability, inherently elastic applications can deal with environment-based avail-

ability with unreliable nodes as long as they ensure that the state of the application

is stored in highly-available storage offerings or communication offerings and

separated from the unreliable nodes.

7.3.2 Eventual Consistency

In scope of a cloud offering that uses data replicas internally, eventual consistency
(126) denotes that multiple reads of data held by the replica may return inconsistent

data, i.e., multiple data may be returned even during the absence of intermediate

writes between read operations. Eventual consistency is a result of prioritizing

availability – the storage offering is reachable and functions as expected and

partition tolerance – the storage offering is resilient towards failures of connection

networks over data consistency – the data returned by the storage offering is

consistent for read operations. The weighting of these properties and why all of

them cannot be maximized at the same time is described in the CAP Theorem [67]

and the eventual consistency (126) pattern. Some cloud providers offer eventual
consistency for their highly available distributed data stores as they prioritize

availability and partition tolerance higher than consistency.

Making data stores highly available is essential when application components

deployed on unreliable nodes rely on the availability of the state at any time. In case

data stores become very big, or they are built on unreliable nodes, they must be

distributed to cope with the data volume or non-availability of individual nodes.

Many cloud offerings additionally allow customers to adjust the desired consis-

tency on a per-request basis.

Impact of Eventual Consistency on the Application Level

Application components that access eventually consistent (126) storage offerings

must ensure that this eventual consistency is properly dealt with. If eventual

consistency is not mitigated on the application level this has impact on the consis-

tency of the results computed by the application. Multiple reads of data, for

example, do not ensure that all obtained data was of the most up-to-date version.

Thus, application components accessing eventually consistent data sources may

7.3 Impact of Other Common Cloud Offering Properties 349

retrieve obsolete data and, therefore, can only produce “eventually consistent”

views and interpretations on that data. The data abstractor (194) pattern can be

used in this scope to present abstracted views on inconsistent data to users of the

application that hide data inconsistencies.

In cases, where inconsistent data cannot be passed-through to the business level,

the data access component (188) pattern can be used with multiple strategies on

how to mitigate eventual consistency, i.e., through version numbers. An introduc-

tion of strict consistency (123) on higher levels of the application stack may,

however, reduce the ability of the application itself to assure the partition tolerance

property, even though the storage offering assures it.

Impact of Eventual Consistency on the Business Level

If eventual consistency (126) cannot be mitigated on the application level,

applications that build upon eventually consistent data stores will produce only

eventually consistent views on that data for the business level. However, in many

situations eventually consistent views are unproblematic as strict consistency (123)
is not required by the business usage scenario anyways. Offering eventual consis-

tency on the business level may require fundamental rethinking of how data is

presented, but on the other hand is more often possible than one would initially

think.

For example, if it is not essential for a Web shop to display the exact number of

available items but only if items are available in general. A consistent view of the

number of available items is not needed. Thus, using the data abstractor (194)

pattern along with an eventual consistent data store backing the Web shop increases

availability and still provides the necessary information. When using an eventually

consistent data store, conditions can arise where a customer orders a product that is

no longer available. In these cases compensation-based recovery of a purchase is

needed and the customer must be notified that an error occurred. However, these are

special cases and in summary occur less frequent than a large-scale Web shop

would be unavailable due to the lack of availability by a strictly consistent data

store. The data abstractor (194) pattern discusses data representations that

inherently support eventual consistency in greater detail as well as gives more

examples for business usage scenarios in which they may be applied.

In essence, eventual consistent data stores can impact the business level and

require compensation-based recovery, however the gained availability may be

beneficial and outweigh the problems arising due to eventual consistency. In the

end it is a business-centric decision to balance the tradeoff between availability and

consistent view on data.

350 7 Impact of Cloud Computing Properties

7.3.3 At-Least-Once Messaging

Closely related to the discussion of eventual consistency (126) is the behavior that
some cloud messaging offerings provide. As the cloud providers often built the

message-oriented middleware (136) on a distributed eventually consistent data

store to assure availability, the provided message queues do not guarantee

exactly-once–delivery (141), but display at-least-once delivery (144).

Impact of At-Least-Once Delivery on the Application Level

At-least-once delivery (144) of messages has severe impacts on the application

level messages may be delivered multiple times, a situation that has to be handled

by the application. Thus, the message-processing application component must

ensure that the fact that a message may be delivered multiple times does not affect

application functionality or the state handled by the application. Two approaches to

handle duplicate messages exist that are discussed in greater detail by the idempo-
tent processor (197) pattern:
• Use unique message identifiers. When an application component receives a

message it must check whether it has already received a message with the same

identifier ID and discard it. However, when the consuming application compo-

nent is distributed and, thus, instantiated multiple times, the overhead of

coordinating the IDs in a distributed setting may be unfeasible.

• Idempotent component. The consuming application component retrieves

messages and treats them as jobs handled with idempotent functionality, i.e. if

a job is performed multiple times it will not lead to a different result as if it were

performed only once. This requires messages to contain data that can be handled

in an idempotent way. In a banking scenario it is beneficial to have a “modify

balance” message to contain the new balance instead of the delta value, as this

message can be executed multiple times without doing harm.

Impact of At-Least-Once Delivery on the Business Level

In case at-least-once delivery (144) cannot be mitigated on the application level it

will have impact on the business level. This means that, for example, business

processes that are triggered by a message that may appear multiple times will be

executed multiple times. Under certain conditions, for example, if no additional

cost occurs when executing a process multiple times or if actions can be easily

undone this may be unproblematic. Therefore, it has to be specified on the business

level if at-least-once delivery (144) of messages is acceptable or not. In some usage

scenarios it may be more efficient, for example, due to reduced costs to accidentally

execute certain activities twice once in a while, for example, sending duplicate

letters to customers than to mitigate the effects of seldom occurring duplicate

messages on the application level.

7.3 Impact of Other Common Cloud Offering Properties 351

References

1. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying

Messaging Solutions. Addison-Wesley, Boston http://www.eaipatterns.com/ (2003)

2. Gamma, E., Helm, R., Johnson, R.: Design Patterns. Elements of Reusable Object-Oriented

Software. Addison-Wesley, Boston (1994)

3. Mell, P., Grance, T.: The NIST definition of cloud computing. National Institute of Standards

and Technology, Online http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

(2011). Accessed June 2013

4. Hanmer, R.: Patterns for Fault Tolerant Software. Wiley, Chichester (2007)

5. Fehling, C., Leymann, F., Mietzner, R., Schupeck, W.: A collection of patterns for cloud

types, cloud service models, and cloud-based application architectures. Technical report,

University of Stuttgart (2011)

6. Smith, D.M.: Hype cycle for cloud computing. Technical report, Gartner (2012). http://www.

gartner.com/id¼2102116

7. Riempp, G., Gieffers-Ankel, S.: Application portfolio management: a decision-oriented view

of enterprise architecture. Inf. Syst. E-Bus. Manag. 5, 359–378 (2007)

8. IBM Global Technology Services: Data center operational efficiency best practices. http://

www.ibm.com/connect/ibm/attachments/N287879Q74060L27/IBM_DC_Study.pdf (2012)

9. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web Services

Platform Architecture: SOAP, WSDL,WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable

Messaging, and More. Prentice Hall, Upper Saddle River (2005)

10. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA. Prentice Hall, Indianapolis (2005)

11. Chappel, D.: Enterprise Service Bus. O’Reilly, Sebastopol (2004)

12. Alexander, C.: The Timeless Way of Building. Oxford University Press, New York (1980)

13. Alexander, C.: A Pattern Language: Towns, Buildings, Construction. Oxford University

Press, New York (1978)

14. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Soft-

ware Architecture. Wiley, Chichester (1996)

15. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley, Boston (2002)

16. Yahoo! Design Pattern Library:. http://developer.yahoo.com/ypatterns/

17. Petre, M.: Why looking isn’t always seeing. Commun. ACM 38, 33–44 (1995)

18. Amazon.com: Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/. Accessed June 2013

19. Rackspace: Cloud servers. http://www.rackspace.com/cloud/public/servers/. Accessed June 2013

20. VMware: vCloud Suite. http://www.vmware.com/products/datacenter-virtualization/vcloud-

suite/. Accessed June 2013

21. Google: Google App Engine. http://developers.google.com/appengine/. Accessed June 2013

22. Bauer, E., Adams, R.: Reliability and Availability of Cloud Computing. Wiley-IEEE Press,

Hoboken (2012)

23. Allspaw, J.: The Art of Capacity Planning: ScalingWeb Resources. O’Reilly, Sebastopol (2008)

24. Barroso, L.A., Hölzle, U.: The datacenter as a computer: an introduction to the design of

warehouse-scale machines. Synth. Lect. Comput. Architect. 4, 1–45 (2009)

C. Fehling et al., Cloud Computing Patterns,
DOI 10.1007/978-3-7091-1568-8, # Springer-Verlag Wien 2014

353

http://www.eaipatterns.com/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.gartner.com/id=2102116
http://www.gartner.com/id=2102116
http://www.gartner.com/id=2102116
http://www.ibm.com/connect/ibm/attachments/N287879Q74060L27/IBM_DC_Study.pdf/
http://www.ibm.com/connect/ibm/attachments/N287879Q74060L27/IBM_DC_Study.pdf/
http://developer.yahoo.com/ypatterns/
http://aws.amazon.com/ec2/
http://www.rackspace.com/cloud/public/servers/
http://www.vmware.com/products/datacenter-virtualization/vcloud-suite/
http://www.vmware.com/products/datacenter-virtualization/vcloud-suite/
http://developers.google.com/appengine/

25. Fehling, C., Leymann, F., Rütschlin, J., Schumm, D.: Pattern-based development and manage-

ment of cloud applications. Future Internet 4, 110–141 (2012). doi:10.3390/fi4010110

26. Fehling, C., Leymann, F., Retter, R., Schumm, D., Schupeck, W.: An architectural pattern

language of cloud-based applications. In: Proceedings of the 18th Conference on Pattern

Languages of Programs (PLoP), Portland, (2011)

27. Fehling, C., Ewald, T., Leymann, F., Pauly, M., Rütschlin, J., Schumm, D.: Capturing cloud

computing knowledge and experience in patterns. In: Proceedings of the 5th IEEE Interna-

tional Conference on Cloud Computing (CLOUD), Honolulu, (2012)

28. Varia, J.: The total cost of (non) ownership of web applications in the cloud. Technical report,

Amazon Web Services (2012)

29. Amazon.com: Amazon EC2 Reserved Instances. http://aws.amazon.com/ec2/reserved-

instances/. Accessed June 2013

30. Belissent, J.: T-city provides valuable lessons for smart cities: which future is now?. http://

blogs.forrester.com/jennifer_belissent_phd/12-03-10-t_city_provides_valuable_lessons_for_smart_

cities_which_future_is_now (2012). Accessed June 2013

31. Gottfrid, D.: Self-service, prorated supercomputing fun!. http://open.blogs.nytimes.com/

2007/11/01/self-service-prorated-super-computing-fun/ (2007). Accessed June 2013

32. Gottfrid, D.: The New York Times Archives + Amazon Web Services ¼ TimesMachine.

http://open.blogs.nytimes.com/2008/05/21/the-new-york-times-archives-amazon-web-

services-timesmachine/ (2008). Accessed June 2013

33. The New York Times: Time machine. http://timesmachine.nytimes.com/

34. T-Systems: Resources delivered straight from the cloud dynamic services for infrastructure.

http://www.t-systems.com/servlet/contentblob/t-systems-2012.de/en/umn/uti/803284_1/

blobBinary/120224_DSI-ps.pdf (2012)

35. OpenStack: Open Stack open source cloud computing software. http://www.openstack.org/.

Accessed June 2013

36. OpenNebula Project: Opennebula: the open source solution for data center virtualization.

http://opennebula.org/. Accessed June 2013

37. Eucalyptus Systems: Cloud computing software from eucalyptus. http://www.eucalyptus.

com/. Accessed June 2013

38. Amazon.com: Amazon Simple Queue Service (Amzon SQS). http://aws.amazon.com/sqs/.

Accessed June 2013

39. WSO2: WSO2 Stratos Live. http://stratoslive.wso2.com/

40. Metasonic AG: http://www.metasonic.de/

41. RunMyProcess: http://www.runmyprocess.com/

42. Cordys: My business platform. http://www.cordys.com/. Accessed June 2013

43. T-Systems: Making SAP-supported business processes secure and flexible dynamic services

for SAP® solutions.. http://www.t-systems.com/umn/uti/803272_1/blobBinary/120229_DS

4SAPSol-ps.pdf (2012)

44. Salesforce: Force. http://www.force.com/. Accessed June 2013

45. Salesforce: CRM software & online CRM system. http://www.salesforce.com/. Accessed

June 2013

46. CloudBees: How it works. http://www.cloudbees.com/platform-overview.cb. Accessed June 2013

47. Microsoft: Office Online Services – Microsoft Office 365. http://www.office365.com.

Accessed June 2013

48. IBM: IBM SmartCloud for social business. http://www.lotuslive.com/. Accessed June 2013

49. Google: Google Apps for Business. http://apps.google.com. Accessed June 2013

50. Deutsche Telekom: Business marketplace. http://apps.telekomcloud.com/

51. National Institute of Standards and Technology (NIST): Cloud computing synopsis and

recommendations. http://www.nist.gov/customcf/get_pdf.cfm?pub_id¼911075 (2012). Accessed

June 2013

52. Microsoft.: Windows Azure. http://www.windowsazure.com/

53. Amazon.com: Elastic Beanstalk. http://aws.amazon.com/elasticbeanstalk/. Accessed June 2013

54. VMware: ESXi and ESX info center. http://www.vmware.com/products/vsphere/esxi-and-esx/.

Accessed June 2013

354 References

http://dx.doi.org/10.3390/fi4010110
http://aws.amazon.com/ec2/reserved-instances/
http://aws.amazon.com/ec2/reserved-instances/
http://blogs.forrester.com/jennifer_belissent_phd/12-03-10-t_city_provides_valuable_lessons_for_smart_cities_which_future_is_now
http://blogs.forrester.com/jennifer_belissent_phd/12-03-10-t_city_provides_valuable_lessons_for_smart_cities_which_future_is_now
http://blogs.forrester.com/jennifer_belissent_phd/12-03-10-t_city_provides_valuable_lessons_for_smart_cities_which_future_is_now
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/
http://open.blogs.nytimes.com/2008/05/21/the-new-york-times-archives-amazon-web-services-timesmachine/
http://open.blogs.nytimes.com/2008/05/21/the-new-york-times-archives-amazon-web-services-timesmachine/
http://timesmachine.nytimes.com/
http://www.t-systems.com/servlet/contentblob/t-systems-2012.de/en/umn/uti/803284_1/blobBinary/120224_DSI-ps.pdf
http://www.t-systems.com/servlet/contentblob/t-systems-2012.de/en/umn/uti/803284_1/blobBinary/120224_DSI-ps.pdf
http://www.openstack.org/
http://opennebula.org/
http://www.eucalyptus.com/
http://www.eucalyptus.com/
http://aws.amazon.com/sqs/
http://stratoslive.wso2.com/
http://www.metasonic.de/
http://www.runmyprocess.com/
http://www.cordys.com/
http://www.t-systems.com/umn/uti/803272_1/blobBinary/120229_DS4SAPSol-ps.pdf
http://www.t-systems.com/umn/uti/803272_1/blobBinary/120229_DS4SAPSol-ps.pdf
http://www.force.com/
http://www.salesforce.com/
http://www.cloudbees.com/platform-overview.cb
http://www.office365.com/
http://www.lotuslive.com/
http://apps.google.com/
http://apps.telekomcloud.com/
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=911075
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=911075
http://www.windowsazure.com/
http://aws.amazon.com/elasticbeanstalk/
http://www.vmware.com/products/vsphere/esxi-and-esx/

55. Amazon.com: Virtual Private Cloud (VPC). http://aws.amazon.com/vpc/. Accessed June 2013

56. Google: Apps for Government. http://www.google.com/enterprise/apps/government. Accessed

June 2013

57. Apache Foundation: ServiceMix. http://servicemix.apache.org/. Accessed June 2013

58. IBM: WebSphere. http://www.ibm.com/software/websphere/. Accessed June 2013

59. T-Systems: Connecting virtualized it resources with the cloud. http://www.t-systems.com/

solutions/uti/983844 (2012). Accessed June 2013

60. Apache Foundation: Deltacloud. http://deltacloud.apache.org/. Accessed June 2013

61. Apache Foundation: Apache libcloud. http://libcloud.apache.org/. Accessed June 2013

62. Jclouds: http://www.jclouds.org/

63. Barroso, L.A., Dean, J., Hölzle, U.: Web search for a planet: the Google cluster architecture.

IEEE Micro. 23, 22–28 (2003)

64. Vishwanath, K.V., Greenberg, A., Reed, D.A.: Modular data centers: how to design them? In:

Proceedings of the 1st ACMWorkshop on Large-Scale System and Application Performance

(LSAP), Indianapolis, (2009)

65. Vishwanath, K.V., Nagappan, N.: Characterizing cloud computing hardware reliability. In:

Proceedings of the 1st ACM Symposium on Cloud Computing (2010)

66. Miller, R.: Failure rates in Google data centers. http://www.datacenterknowledge.com/

archives/2008/05/30/failure-rates-in-google-data-centers/ (2008). Accessed June 2013

67. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services. ACM SIGACT News 33, 51–59 (2002)

68. Brewer, E.: CAP twelve years later: how the “rules” have changed. IEEE Comput. Mag. 45,

23–28 (2012)

69. Ramakrishnan, R.: CAP and cloud data management. IEEE Comput. Mag. 45, 23–28 (2012)

70. Abadi, D.J.: Consistency tradeoffs in modern distributed database system design. IEEE

Comput. Mag. 45, 23–28 (2012)

71. Baremetalcloud: Dedicated servers. http://www.baremetalcloud.com/. Accessed June 2013

72. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. ACM Trans.

Internet Tech. 2(2), 115–150 (2002)

73. Apache Foundation: Apache Tomcat. http://tomcat.apache.org/. Accessed June 2013

74. WSO2: Stratos. http://wso2.com/cloud/stratos/

75. Wasson, C.S.: System Analysis, Design, and Development: Concepts, Principles, and

Practices. Wiley, Hoboken (2005)

76. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice Hall,

Upper Saddle River (1999)

77. Amazon.com: Amazon EC2 Service Level Agreement. http://aws.amazon.com/ec2-sla/

(2008). Accessed June 2013

78. Goldberg, R.P.: Architecture of virtual machines. In: Proceedings of the Workshop on Virtual

Computer Systems, New York, (1973)

79. Goldberg, R.P.: Architectural principles for virtual computer systems. Ph.D. thesis, Harvard

University (1972)

80. Goldberg, R.P.: Virtual machines: semantics and examples. In: Proceedings IEEE Interna-

tional Computer Society Conference (1971)

81. IBM: System Z. http://www.ibm.com/systems/z/. Accessed June 2013

82. VMware: Workstation. http://www.vmware.com/products/workstation/. Accessed June 2013

83. VMware: Player. http://www.vmware.com/products/player/. Accessed June 2013

84. Citrix Systems: Xen. http://xen.org. Accessed June 2013

85. Microsoft: Hyper-V Server. http://www.microsoft.com/hyper-v-server/. Accessed June 2013

86. RedHat: Kernel based virtualmachine (KVM). http://www.linux-kvm.org/. Accessed June2013

87. Oracle: VirtualBox. http://www.virtualbox.org/. Accessed June 2013

88. Oracle: JAVA. http://www.java.com/. Accessed June 2013

89. JBoss Community: JBoss ESB. http://www.jboss.org/jbossesb. Accessed June 2013

90. VMware: CloudFoundry. http://www.cloudfoundry.com/. Accessed June 2013

91. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT

Press, Cambridge (2009)

References 355

http://aws.amazon.com/vpc/
http://www.google.com/enterprise/apps/government
http://servicemix.apache.org/
http://www.ibm.com/software/websphere/
http://www.t-systems.com/solutions/uti/983844
http://www.t-systems.com/solutions/uti/983844
http://deltacloud.apache.org/
http://libcloud.apache.org/
http://www.jclouds.org/
http://www.datacenterknowledge.com/archives/2008/05/30/failure-rates-in-google-data-centers/
http://www.datacenterknowledge.com/archives/2008/05/30/failure-rates-in-google-data-centers/
http://www.baremetalcloud.com/
http://tomcat.apache.org/
http://wso2.com/cloud/stratos/
http://aws.amazon.com/ec2-sla/
http://www.ibm.com/systems/z/
http://www.vmware.com/products/workstation/
http://www.vmware.com/products/player/
http://xen.org/
http://www.microsoft.com/hyper-v-server/
http://www.linux-kvm.org/
http://www.virtualbox.org/
http://www.java.com/
http://www.jboss.org/jbossesb
http://www.cloudfoundry.com/

92. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun.

ACM 51, 107–113 (2008)

93. Varia, J.: Cloud architectures. Technical report, Amazon Web Services, June 2008

94. Amazon.com: Amazon Elastic MapReduce (Amazon EMR). http://aws.amazon.com/

elasticmapreduce/. Accessed June 2013

95. Apache Foundation: Apache Hadoop. http://hadoop.apache.org/

96. Microsoft: Windows Azure HDInsight. http://www.hadooponazure.com/

97. The application/json Media Type for JavaScript Object Notation (JSON). http://www.json.

org/ (2006). Accessed June 2013

98. Apache Foundation: Couchdb. http://couchdb.apache.org/. Accessed June 2013

99. Internet Engineering Task Force (IETF), HTTP Extensions for Web Distributed Authoring

and Versioning (WebDAV). http://www.webdav.org/specs/rfc4918.pdf (2007)

100. Microsoft: Common Internet File System (CIFS) Protocol Specification. http://download.

microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-a657e5900cd3/[MS-BRWS].pdf

June 2012

101. Microsoft: Windows Azure Drives. http://www.windowsazure.com/en-us/develop/net/

fundamentals/cloud-storage/. Accessed June 2013

102. Amazon.com: Amazon Elastic Block Store (EBS). http://aws.amazon.com/ebs/. Accessed

June 2013

103. Amazon.com: Amazon Simple Storage Service (S3). http://aws.amazon.com/s3/. Accessed

June 2013

104. Amazon.com: Amazon CloudFront. http://aws.amazon.com/cloudfront/

105. Microsoft: Blob (Binary Large Object) Storage. http://www.windowsazure.com/en-us/home/

features/data-management/

106. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13,

377–387 (1970)

107. Database language sql. ANSI/ISO/IEC, Database Language SQL, International Standard (IS)

(1999)

108. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts. McGraw-Hill

Professional, New York (2010)

109. Elmasri, R., Navathe, S.: Fundamentals of Database Systems. AddisonWesley, Upper Saddle

River (2010)

110. IBM: DB2 database software. http://www.ibm.com/software/data/db2/. Accessed June 2013

111. Oracle: Database 11g. http://www.oracle.com/products/database/. Accessed June 2013

112. Oracle: MySQL. http://www.mysql.com/. Accessed June 2013

113. Microsoft: SQL Server. http://www.microsoft.com/sqlserver/. Accessed June 2013

114. Amazon.com: Amazon EC2Running IBM. http://aws.amazon.com/ibm/. Accessed June 2013

115. Amazon.com: Oracle and AWS. http://aws.amazon.com/oracle/. Accessed June 2013

116. Amazon.com: Amazon Relational Database Service (Amazon RDS). http://aws.amazon.com/

rds/. Accessed June 2013

117. Microsoft: SQL Azure. http://www.windowsazure.com/en-us/home/features/data-management/.

Accessed June 2013

118. Jayasinghe, D., Malkowski, S., Wang, Q., Li, J., Xiong, P., Pu, C.: Variations in performance

and scalability when migrating n-tier applications to different clouds. In: Proceedings of the

IEEE International Conference on Cloud Computing (CLOUD), Washington DC, (2011)

119. Tiwari, S.: Professional NoSQL. Wrox, Hoboken (2011)

120. Sadalage, P.J., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World of

Polyglot Persistence. Addison-Wesley, Upper Saddle River (2012)

121. Apache Foundation: Cassandra. http://cassandra.apache.org/. Accessed June 2013

122. 10gen: Mongodb. http://www.mongodb.org/. Accessed June 2013

123. Amazon.com: SimpleDB. http://aws.amazon.com/simpledb/. Accessed June 2013

124. Amazon.com: Dynamo. http://aws.amazon.com/dynamodb/. Accessed June 2013

125. Microsoft:WindowsAzure Table. http://download.microsoft.com/download/3/B/1/3B170FF4-

2354-4B2D-B4DC-8FED5F838F6A/Windows%20Azure%20Table%20-%20Dec%202008.

docx (2008)

356 References

http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://hadoop.apache.org/
http://www.hadooponazure.com/
http://www.json.org/
http://www.json.org/
http://couchdb.apache.org/
http://www.webdav.org/specs/rfc4918.pdf
http://download.microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-a657e5900cd3/[MS-BRWS].pdf
http://download.microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-a657e5900cd3/[MS-BRWS].pdf
http://www.windowsazure.com/en-us/develop/net/fundamentals/cloud-storage/
http://www.windowsazure.com/en-us/develop/net/fundamentals/cloud-storage/
http://aws.amazon.com/ebs/
http://aws.amazon.com/s3/
http://aws.amazon.com/cloudfront/
http://www.windowsazure.com/en-us/home/features/data-management/
http://www.windowsazure.com/en-us/home/features/data-management/
http://www.ibm.com/software/data/db2/
http://www.oracle.com/products/database/
http://www.mysql.com/
http://www.microsoft.com/sqlserver/
http://aws.amazon.com/ibm/
http://aws.amazon.com/oracle/
http://aws.amazon.com/rds/
http://aws.amazon.com/rds/
http://www.windowsazure.com/en-us/home/features/data-management/
http://cassandra.apache.org/
http://www.mongodb.org/
http://aws.amazon.com/simpledb/
http://aws.amazon.com/dynamodb/
http://download.microsoft.com/download/3/B/1/3B170FF4-2354-4B2D-B4DC-8FED5F838F6A/Windows%20Azure%20Table%20-%20Dec%202008.docx
http://download.microsoft.com/download/3/B/1/3B170FF4-2354-4B2D-B4DC-8FED5F838F6A/Windows%20Azure%20Table%20-%20Dec%202008.docx
http://download.microsoft.com/download/3/B/1/3B170FF4-2354-4B2D-B4DC-8FED5F838F6A/Windows%20Azure%20Table%20-%20Dec%202008.docx

126. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,

Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. Technical

report, Google. http://research.google.com/archive/bigtable.html (2006)

127. Tanenbaum, A.S., van Steen, M.: Distributed Systems Principles and Paradigms, 2nd edn.

Prentice Hall, Upper Saddle River (2006)

128. Bernstein, P.A., Newcomer, E.: Principles of Transaction Processing. Morgan Kaufmann,

San Francisco (2009)

129. Gray, J., Reuter, A.: Transaction Processing – Concepts and Techniques. Morgan Kaufmann,

San Francisco (1993)

130. Pritchett, D.: Base: an acid alternative. ACM Queue 6, 48–55 (2008)

131. Vogels, W.: Eventually consistent. Commun. ACM 52, 40–44 (2009)

132. Amazon.com: Amazon Simple Storage Service FAQs: what data consistency model does

Amazon S3 employ? http://aws.amazon.com/s3/faqs/#What_data_consistency_model_does_

Amazon_S3_employ

133. Shlomo Swidler: Read-after-write consistency in Amazon S3. Online, 10 2009. http://

shlomoswidler.com/2009/12/read-after-write-consistency-in-amazon.html (2009). Accessed

June 2013

134. Domain names – concepts and facilities. http://tools.ietf.org/html/rfc1034 (1987)

135. Hartpence, B.: Packet Guide to Routing and Switching. O’Reilly, Sebastopol (2011)

136. Odom, W.: CCNA INTRO Exam Certification Guide. Cisco Press (2003)

137. Deal, R.: Cisco Router Firewall Security. Cisco Press, Indianapolis (2004)

138. Amazon.com: Amazon Web Services (AWS). http://aws.amazon.com/

139. Amazon Web Services: Overview of Security Processes. Amazon.com. http://aws.amazon.

com/articles/1697 (2008). Accessed June 2013

140. Microsoft: Windows Azure Messaging. http://www.windowsazure.com/en-us/home/

features/messaging/

141. Apache Foundation: Apache camel. http://camel.apache.org/

142. IBM: WebSphere MQ. http://www.ibm.com/software/integration/wmq/

143. Apache Foundation: ActiveMQ. http://activemq.apache.org/

144. Web services reliable messaging (ws-reliablemessaging) version 1.2. http://docs.oasis-open.

org/ws-rx/wsrm/v1.2/wsrm.html (2009). Accessed June 2013

145. Hapner, M., Burridge, R., Sharma, R., Fialli, J., Stout, K.: Java Message Service. Sun

Microsystems, 901 San Antonio Road Palo Alto, CA 94303 U.S.A., 1.1 edition. http://

download.oracle.com/otn-pub/jcp/7195-jms-1.1-fr-spec-oth-JSpec/jms-1_1-fr-spec.pdf

(2002). Accessed June 2013

146. Chappell, D.A., Monson-Haefel, R.: Java Message Service. O’Reilly, Sebastopol (2000)

147. Amazon.com: Amazon Simple Notification Service FAQs: how many times will a subscriber

receive each message? http://aws.amazon.com/sns/faqs/#44

148. Extensible markup language (xml) 1.0. http://www.w3.org/TR/xml/ (2006). Accessed June

2013

149. SOAP version 1.2. http://www.w3.org/TR/soap/ (2007). Accessed June 2013

150. Cheesman, J., Daniels, J.: UML Components: A Simple Process for Specifying Component-

Based Software. Addison-Wesley, Boston (2001)

151. Eeles, P., Cripps, P.: The Process of Software Architecting. Addison-Wesley, Upper Saddle

River (2009)

152. Daigneau, R.: Service Design Patterns: Fundamental Design Solutions for SOAP/WSDL and

RESTful Web Services. Addison-Wesley, Upper Saddle River (2011)

153. Youngs, R., Redmond-Pyle, D., Spaas, P., Kahan, E.: A standard for architecture description.

IBM Syst. J. 38, 32–50 (1999)

154. Varia J.: Architecting for the cloud: best practices. Technical report, Amazon Web Services,

May 2010

155. Zimmermann, O., Milinski, S., Craes, M., Oellermann, F.: Second generation web services-

oriented architecture in production in the finance industry. In: Companion to the 19th annual

ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages, and

Applications (OOPSLA), Vancouver, (2004)

References 357

http://research.google.com/archive/bigtable.html
http://aws.amazon.com/s3/faqs/#What_data_consistency_model_does_Amazon_S3_employ
http://aws.amazon.com/s3/faqs/#What_data_consistency_model_does_Amazon_S3_employ
http://shlomoswidler.com/2009/12/read-after-write-consistency-in-amazon.html%20(2009).%20Accessed%20June%202013
http://shlomoswidler.com/2009/12/read-after-write-consistency-in-amazon.html%20(2009).%20Accessed%20June%202013
http://shlomoswidler.com/2009/12/read-after-write-consistency-in-amazon.html%20(2009).%20Accessed%20June%202013
http://tools.ietf.org/html/rfc1034
http://aws.amazon.com/
http://aws.amazon.com/articles/1697
http://aws.amazon.com/articles/1697
http://www.windowsazure.com/en-us/home/features/messaging/
http://www.windowsazure.com/en-us/home/features/messaging/
http://camel.apache.org/
http://www.ibm.com/software/integration/wmq/
http://activemq.apache.org/
http://docs.oasis-open.org/ws-rx/wsrm/v1.2/wsrm.html
http://docs.oasis-open.org/ws-rx/wsrm/v1.2/wsrm.html
http://download.oracle.com/otn-pub/jcp/7195-jms-1.1-fr-spec-oth-JSpec/jms-1_1-fr-spec.pdf
http://download.oracle.com/otn-pub/jcp/7195-jms-1.1-fr-spec-oth-JSpec/jms-1_1-fr-spec.pdf
http://aws.amazon.com/sns/faqs/#44
http://www.w3.org/TR/xml/
http://www.w3.org/TR/soap/

156. Zimmermann, O., Doubrovski, V., Grundler, J., Hogg, K.: Service-oriented architecture and

business process choreography in an order management scenario: rationale, concepts, lessons

learned. In: Companion to the 20th Annual ACM SIGPLAN Conference on Object-oriented

Programming, Systems, Languages, and Applications (OOPSLA), San Diego, (2005)

157. T-Systems: Process & service platform flexible business processes from the cloud. http://

www.t-systems.com/innovations/uti/824042 (2012)

158. Web services business process execution language version 2.0. http://docs.oasis-open.org/

wsbpel/2.0/OS/wsbpel-v2.0-OS.html (2007). Accessed June 2013

159. Business process model and notation (BPMN) version 2.0. http://www.omg.org/spec/BPMN/

2.0/ (2011)

160. Web services description language (WSDL) version 2.0. http://www.w3.org/TR/wsdl20/ (2007)

161. Fielding, R.T.: Architectural styles and the design of network-based software architectures.

Ph.D. thesis, University of California (2000)

162. Rodriguez, A.: Restful web services: the basics. Technical report, IBM developerWorks.

https://www.ibm.com/developerworks/webservices/library/ws-restful/ (2008). Accessed June

2013

163. Tatnall, A. (ed.): Web Portals: The New Gateways to Internet Information and Services.

IGI Publishing, Hershey (2005)

164. Google: Google Web Toolkit. http://developers.google.com/web-toolkit/. Accessed June 2013

165. Garrett, J.J.: Ajax: a new approach to web applications. http://www.adaptivepath.com/ideas/

ajax-new-approach-web-applications (2005). Accessed June 2013

166. Yahoo!: Yahoo pipes. http://pipes.yahoo.com/pipes/

167. Yahoo!: Yahoo widgets. http://widgets.yahoo.com/

168. Mahemoff, M.: Ajax Design Patterns. O’Reilly, Sebastopol (2006)

169. Gross, C.: Ajax Patterns and Best Practices. Apress, Berkeley (2006)

170. Chappell, D.: The windows azure programming model. http://www.windowsazure.com/

en-us/develop/net/other-resources/white-papers/ (2010). Accessed June 2013

171. Amazon.com: Amazon EC2 spot instances. http://aws.amazon.com/ec2/spot-instances/

172. Henderson, C.: Building Scalable Web Sites: Building, Scaling, and Optimizing the Next

Generation of Web Applications. O’Reilly, Sebastopol (2006)

173. Fowler, M.: Data access routines. IEEE Software 20, 96–98 (2003)

174. Chong, F., Carraro, G.: Architecture strategies for catching the long tail. Technical report,

Microsoft. http://msdn.microsoft.com/en-us/library/aa479069.aspx (2006)

175. San Francisco Municipal Transportation Agency (SFMTA): SFpark. http://sfpark.org.

Accessed June 2013

176. Mizonov, V., Manheim, S.: Windows azure queues and windows azure service bus queues –

compared and contrasted. http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx.

Accessed June 2013

177. Perry, M., Balachandran, M., Plata, J., Solano, P., Thomas, P.: MQSeries Programming

Patterns. IBM Redbook. http://www.redbooks.ibm.com/redbooks/pdfs/sg246506.pdf

178. Abbott, M.L., Fisher, M.T.: The Art of Scalability: Scalable Web Architecture, Processes and

Organizations for the Modern Enterprise. Addison-Wesley, Upper Saddle River (2009)

179. Leymann, F., Fehling, C., Mietzner, R., Nowak, A., Dustdar, S.: Moving applications to the

cloud: An approach based on application model enrichment. Int. J. Cooperative Info. Syst.

20(3), 307–356 (2011). doi:10.1142/S0218843011002250

180. National Oceanic and Atmospheric Administration: National digital forecast database (NDFD)

simple object access protocol (SOAP) web service. http://graphical.weather.gov/xml/. Accessed

June 2013

181. Jacobs, D., Aulbach, S.: Ruminations on multi-tenant databases. In: Proceedings of the

Conference on Business, Technology, and Web, Aachen, (2007)

182. Guo, C.J., Sun, W., Huang, Y., Wang, Z.H., Gao, B.: A framework for native multi-tenancy

application development and management. In: The 9th IEEE International Conference on

358 References

http://www.t-systems.com/innovations/uti/824042
http://www.t-systems.com/innovations/uti/824042
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://www.w3.org/TR/wsdl20/
https://www.ibm.com/developerworks/webservices/library/ws-restful/
http://developers.google.com/web-toolkit/
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://pipes.yahoo.com/pipes/
http://widgets.yahoo.com/
http://www.windowsazure.com/en-us/develop/net/other-resources/white-papers/
http://www.windowsazure.com/en-us/develop/net/other-resources/white-papers/
http://aws.amazon.com/ec2/spot-instances/
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://sfpark.org/
http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx
http://www.redbooks.ibm.com/redbooks/pdfs/sg246506.pdf
http://dx.doi.org/10.1142/S0218843011002250
http://graphical.weather.gov/xml/

E-Commerce Technology and the 4th IEEE International Conference on Enterprise Computing,

E-Commerce, and E-Services, Tokyo, (2007)

183. WSO2: WSO2 Cloud Services Gateway. http://wso2.com/cloud/connectors/services-gateway/.

Accessed June 2013

184. Chappell, D.A.: Introducing OData: Data Access for the Web, the cloud, mobile devices, and

more. Microsoft Whitepaper, May 2011

185. Microsoft: How to use the service bus relay service. http://www.windowsazure.com/en-us/

develop/net/how-to-guides/service-bus-relay/. Accessed June 2013

186. Topology and orchestration specification for cloud applications version 1.0. http://docs.

oasis-open.org/tosca/TOSCA/v1.0/csd04/TOSCA-v1.0-csd04.html (2012). Accessed June 2013

187. DMTF Cloud Management Working Group: Cloud Infrastructure Management Interface

(CIMI) Model and RESTful HTTP-based Protocol. http://dmtf.org/sites/default/files/

standards/documents/DSP0263_1.0.1.pdf (2012). Accessed June 2013

188. IEEE: Cloud profiles working group (CPWG). http://standards.ieee.org/develop/wg/

CPWG-2301_WG.html. Accessed June 2013

189. IEEE: Intercloud working group (ICWG). http://standards.ieee.org/develop/wg/ICWG-2302_

WG.html. Accessed June 2013

190. Opscode: Chef. http://www.opscode.com/chef/

191. Puppet Labs: It automation software for system administrators. http://puppetlabs.com/

192. RightScale: Cloud management. http://www.rightscale.com/products/cloud-management.php

193. Scalr: Features. http://scalr.net/features/

194. Amazon.com: Auto Scaling. http://aws.amazon.com/autoscaling/

195. Microsoft: The autoscaling application block. http://msdn.microsoft.com/en-us/library/

hh680892.aspx (2012)

196. Menasce, D.A., Almeida, V.A.F.: Capacity Planning for Web Services: Metrics, Models, and

Methods. Prentice Hall, Upper Saddle River (2001)

197. Microsoft: Overview of Windows Azure traffic manager. http://msdn.microsoft.com/en-us/

library/windowsazure/hh744833.aspx. Accessed June 2013

198. Amazon.com: Amazon CloudWatch. http://aws.amazon.com/cloudwatch/. Accessed June 2013

199. Douglass, B.P.: Real-Time Design Patterns: Robust Scalable Architecture for Real-Time

Systems. Addison-Wesley, Boston (2002)

200. Murch, R.: Autonomic Computing. IBM Press/Prentice Hall, Upper Saddle River (2004)

201. Hill, Z., Li, J., Mao, M., Ruiz-Alvarez, A., Humphrey, M.: Early observations on the

performance of windows azure. In: Proceedings of the 19th ACM International Symposium

on High Performance Distributed Computing, Chicago, (2010)

202. ParaleapTechnologies: Elasticity-as-a-service forWindowsAzure. http://www.paraleap.com/

203. Hull, S.: 5 things toxic to scalability. http://www.iheavy.com/2011/08/26/5-things-are-toxic-to-

scalability/ (2011). Accessed June 2013

204. Hoff, T.: Strategy: guaranteed availability requires reserving instances in specific zones.

http://highscalability.com/blog/2011/12/28/strategy-guaranteed-availability-requires-reserving-

instance.html (2011). Accessed June 2013

205. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through Build,

Test, and Deployment Automation. Addison-Wesley, Upper Saddle River (2010)

206. Guest S.: Patterns for cloud computing. slideshare.net/simonguest/patterns-for-cloud-

computing (2009)

207. The PHP Group: PHP: Hypertext preprocessor. http://www.php.net/. Accessed June 2013

208. Microsoft: Active Server Pages (ASP). http://msdn.microsoft.com/en-us/library/aa286483.

aspx

209. Apache Foundation: Http server project. http://httpd.apache.org/. Accessed June 2013

210. Microsoft: Internet information services (IIS). http://www.iis.net

211. Oracle: Java EE reference at a glance. http://www.oracle.com/technetwork/java/javaee/

documentation/. Accessed June 2013

212. Hypertext transfer protocol – HTTP/1.1. http://tools.ietf.org/pdf/rfc2616.pdf (1999)

References 359

http://wso2.com/cloud/connectors/services-gateway/
http://www.windowsazure.com/en-us/develop/net/how-to-guides/service-bus-relay/
http://www.windowsazure.com/en-us/develop/net/how-to-guides/service-bus-relay/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd04/TOSCA-v1.0-csd04.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd04/TOSCA-v1.0-csd04.html
http://dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.1.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.1.pdf
http://standards.ieee.org/develop/wg/CPWG-2301_WG.html
http://standards.ieee.org/develop/wg/CPWG-2301_WG.html
http://standards.ieee.org/develop/wg/ICWG-2302_WG.html
http://standards.ieee.org/develop/wg/ICWG-2302_WG.html
http://www.opscode.com/chef/
http://puppetlabs.com/
http://www.rightscale.com/products/cloud-management.php
http://scalr.net/features/
http://aws.amazon.com/autoscaling/
http://msdn.microsoft.com/en-us/library/hh680892.aspx
http://msdn.microsoft.com/en-us/library/hh680892.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh744833.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh744833.aspx
http://aws.amazon.com/cloudwatch/
http://www.paraleap.com/
http://www.iheavy.com/2011/08/26/5-things-are-toxic-to-scalability/
http://www.iheavy.com/2011/08/26/5-things-are-toxic-to-scalability/
http://highscalability.com/blog/2011/12/28/strategy-guaranteed-availability-requires-reserving-instance.html
http://highscalability.com/blog/2011/12/28/strategy-guaranteed-availability-requires-reserving-instance.html
http://slideshare.net/simonguest/patterns-for-cloud-computing
http://slideshare.net/simonguest/patterns-for-cloud-computing
http://www.php.net/
http://msdn.microsoft.com/en-us/library/aa286483.aspx
http://msdn.microsoft.com/en-us/library/aa286483.aspx
http://httpd.apache.org/
http://www.iis.net/
http://www.oracle.com/technetwork/java/javaee/documentation/
http://www.oracle.com/technetwork/java/javaee/documentation/
http://tools.ietf.org/pdf/rfc2616.pdf

213. Akamai: HD network. http://www.akamai.com/html/solutions/hdnetwork.html. Accessed

June 2013

214. Nygren, E., Sitaraman, R.K., Sun, J.: The Akamai network: a platform for high-performance

internet applications. ACM SIGOPS Oper. Syst. Rev. 44, 2–19 (2010)

215. CloudFlare: CloudFlare is the next-generation CDN. http://www.cloudflare.com/features-

cdn. Accessed June 2013

216. Dreibelbis, A., Hechler, E., Mathews, Bill., Oberhofer, M., Sauter, G.: Information service

patterns, part 4: Master data management architecture patterns. Technical report, IBM

developerWorks. http://www.ibm.com/developerworks/data/library/techarticle/dm-0703sauter/

(2007)

217. Ferguson, N., Schneier, B.: Practical Cryptography. Wiley, New York (2003)

218. Kahate, A.: Cryptography and Network Security. Tata McGraw-Hill, New Delhi (2003)

219. Hatzelhoffer, L., Humboldt, K., Lobeck, M., Wiegandt, C.-C.: Smart City in Practice:

Innovation Lab Between Vision and Reality. Jovis Verlag, Berlin (2012)

220. Hatzelhoffer, L., Humboldt, K., Lobeck, M., Wiegandt, C.-C.: Smart City konkret – Eine

Zukunftswerkstatt in Deutschland zwischen Idee und Praxis. Jovis Verlag, Berlin (2012)

221. Amazon.com: AWS Case Study: Ooyala. http://aws.amazon.com/de/solutions/case-studies/

ooyala/ (2011). Accessed June 2013

222. Amazon.com: AWS case study: Washington Post. http://aws.amazon.com/solutions/

case-studies/washington-post/. Accessed June 2013

223. Dropbox: http://www.dropbox.com

224. StorSimple: http://www.storsimple.com/

225. Tate, J., Lucchese, F., Moore, R.: Introduction to Storage Area Networks. IBM, red book

edition, Online (2006)

226. Farley, M.: StorSimple solution for cloud-integrated enterprise storage. StorSimple

Whitepaper. http://www.storsimple.com/Portals/65157/docs/StorSimple_CES_%20White_

Paper_Rev1_3.pdf (2012)

227. Gladinet: http://gladinet.com/

228. Varia, J.: Migrating your existing applications to the cloud – a phase-driven approach to cloud

migration. Technical report, Amazon Web Services (2010)

229. Crashplan: Online backup and storage. http://www.crashplan.com/. Accessed June 2013

230. Acronis: Acronis online backup. http://www.acronis.com/homecomputing/products/

online-backup/index.html. Accessed June 2013

231. Amazon.com: VM import/export. http://aws.amazon.com/ec2/vmimport/. Accessed June 2013

232. VMware: vCenter Converter. http://www.vmware.com/products/datacenter-virtualization/

converter/. Accessed June 2013

233. Elisha, S.: Backup and recovery approaches using Amazon web services. Technical report,

Amazon Web Services. http://media.amazonwebservices.com/AWS_Backup_Recovery.pdf

(2012). Accessed June 2012

234. Amazon Corporate IT Team: Amazon.com leverages the AWS cloud for database backups.

Technical report, Amazon. http://media.amazonwebservices.com/AWS_Amazon_Oracle_

Backups.pdf (2012)

235. Amazon.com: Amazon Glacier. http://aws.amazon.com/glacier/

236. Automotive Simulation Center Stuttgart (ASC-S): http://www.asc-s.de/

237. AmazonWeb Services: Migration scenario: Migrating backend processing pipeline to the aws

cloud. http://media.amazonwebservices.com/CloudMigration-scenario-backend-processing.

pdf (2010)

238. Amazon Web Services: Migration scenarios: Batch processing. http://media.amazonweb

services.com/CloudMigration-scenario-batch-apps.pdf (2010)

239. Wessels, D.: Web Caching. O’Reilly, Sebastopol (2001)

240. Baron, J., Schneider, R.: Storage options in the AWS cloud: use cases. Technical report,

Amazon Web Services (2010)

241. Amazon Web Services: Migration scenarios: Web application architecture. http://media.

amazonwebservices.com/CloudMigration-scenario-wep-app.pdf (2010)

360 References

http://www.akamai.com/html/solutions/hdnetwork.html
http://www.cloudflare.com/features-cdn
http://www.cloudflare.com/features-cdn
http://www.ibm.com/developerworks/data/library/techarticle/dm-0703sauter/
http://aws.amazon.com/de/solutions/case-studies/ooyala/
http://aws.amazon.com/de/solutions/case-studies/ooyala/
http://aws.amazon.com/solutions/case-studies/washington-post/
http://aws.amazon.com/solutions/case-studies/washington-post/
http://www.dropbox.com/
http://www.storsimple.com/
http://www.storsimple.com/Portals/65157/docs/StorSimple_CES_%20White_Paper_Rev1_3.pdf
http://www.storsimple.com/Portals/65157/docs/StorSimple_CES_%20White_Paper_Rev1_3.pdf
http://gladinet.com/
http://www.crashplan.com/
http://www.acronis.com/homecomputing/products/online-backup/index.html
http://www.acronis.com/homecomputing/products/online-backup/index.html
http://aws.amazon.com/ec2/vmimport/
http://www.vmware.com/products/datacenter-virtualization/converter/
http://www.vmware.com/products/datacenter-virtualization/converter/
http://media.amazonwebservices.com/AWS_Backup_Recovery.pdf
http://media.amazonwebservices.com/AWS_Amazon_Oracle_Backups.pdf
http://media.amazonwebservices.com/AWS_Amazon_Oracle_Backups.pdf
http://aws.amazon.com/glacier/
http://www.asc-s.de/
http://media.amazonwebservices.com/CloudMigration-scenario-backend-processing.pdf
http://media.amazonwebservices.com/CloudMigration-scenario-backend-processing.pdf
http://media.amazonwebservices.com/CloudMigration-scenario-batch-apps.pdf
http://media.amazonwebservices.com/CloudMigration-scenario-batch-apps.pdf
http://media.amazonwebservices.com/CloudMigration-scenario-wep-app.pdf
http://media.amazonwebservices.com/CloudMigration-scenario-wep-app.pdf

242. Chappell, D.A.: Introducing Windows Azure. http://www.windowsazure.com/en-us/develop/

net/other-resources/white-papers/ (2010). Accessed June 2013

243. SmartBear: loadUI. http://www.loadui.org/

244. SmartBear: Testing in the cloud. http://www.loadui.org/Distribution/load-testing-in-

amazon-cloud.html (2012). Accessed June 2013

References 361

http://www.windowsazure.com/en-us/develop/net/other-resources/white-papers/
http://www.windowsazure.com/en-us/develop/net/other-resources/white-papers/
http://www.loadui.org/
http://www.loadui.org/Distribution/load-testing-in-amazon-cloud.html
http://www.loadui.org/Distribution/load-testing-in-amazon-cloud.html

Index

A
Abstraction, 195

Access isolation, 208

ACID, 124, 146, 202

Acknowledgement, 145, 149, 204

Activity, 265

AJAX. See Asynchronous Java Script
and XML (AJAX)

Application component, 228. See also
Component

Application state, 172

Approximation, 195

As a service

infrastructure, 45

platform, 49

software, 55

Asynchronous communication, 136, 175, 235

Asynchronous Java Script and XML

(AJAX), 178

At-least-once delivery, 144, 354

Atomicity, 124

Automated management, 7

Availability, 82, 194

environment-based, 98, 349

node-based, 95

B
Backup, 111

Batch processing, 185

Binary large object (BLOB), 112

Blob storage, 112

Block device, 110

Block storage, 110

BPMN. See Business Process Model and

Notation (BPMN)

Business continuity, 314

Business logic tier, 291, 295

Business Process Model and Notation

(BPMN), 165, 183, 264

Business resiliency, 314

C
Caches, 173, 301, 312, 323

CAP. See Consistency, availability, and
partitioning tolerance (CAP)

Capital expenditures (CAPEX), 4, 23

Change tendency, 195

Client-side consistency, 200

Cloud

customer, 3

hybrid, 75

-native application, 5

offering, 3

outsourced private, 67

private, 66

properties, 3

provider, 3

public, 62

resource, 3

virtual private, 67, 69

Cloud application

properties, 5

three-tier, 294

two-tier, 290

Cloud computing properties, 3

Cloud offering

communication, 131

processing, 100

storage, 109

Cloud properties, 3

compensable, 333

pass-through, 334

upwards-propagation, 336

Cluster, 170

C. Fehling et al., Cloud Computing Patterns,
DOI 10.1007/978-3-7091-1568-8, # Springer-Verlag Wien 2014

363

Collapsed sub process, 265

Communication

asynchronous, 136, 175, 235

overhead, 181

synchronous, 236

Compensable properties, 333

Competing consumer, 108

Compliance, 231

Component

batch processing, 185

data access, 188

dedicated, 218

health, 283

processing, 180

proxy, 228

shared, 210

stateful, 168

stateless, 171

tenant-isolated, 208, 214

user interface, 175

Component version, 275

Configurability, 177, 182

Configuration, 175, 247

managed, 247

Consistency, 83, 194

client-side, 200

eventual, 126, 352

strict, 123

Consistency, availability, and partitioning

tolerance (CAP), 83, 194

Content distribution network, 300

Continuously changing workload, 40

Coupling

loose, 156

tight, 136, 155

D
Data abstraction, 194

Data access, 188

Database, 115

Data replication, 231

Data store, 266

Data tier, 291, 295

Data volume isolation, 208

Decommission, 4

Dedicated component, 218

Degradation, 272

Delivery

at-least-once, 144, 354

exactly-once, 141

guaranteed, 138

timeout-based, 149

transaction-based, 146

Distributed application, 160

Distributed systems, 155

Distribution, 6

Divide and conquer, 108

Domain model, 120

Duplicate reads, 292

Durability, 125

E
Economies of scale, 5

Elastic infrastructure, 87

Elasticity, 5, 6, 267, 275, 339

load balancer, 254

management, 240, 267

manager, 250

queue, 257

Elastic platform, 91

Elastic scaling, 25

Encrypted channel, 134

Encryption, 305

End event, 265

Enterprise service bus (ESB), 157

Environment-based availability, 98, 346

ESB. See Enterprise service bus (ESB)
Event

end, 265

message, 264

start, 264

timer, 264

Eventual consistency, 126, 349

Exactly-once delivery, 141

Exclusive event-based gateway, 264

Exclusive gateway, 265

Execution environment, 104

Experienced workload, 24

F
Failure, 260, 283

Failure resiliency, 240

Feature, 271

Feature flag, 271

File system, 112

File transfer, 138

Firewall, 133

Folder, 112

Freshness control, 301

G
Gateway

exclusive, 265

exclusive event-based, 264

parallel, 266

364 Index

Growing workload, 40

Guaranteed delivery, 141

H
Hard drive, 110

Health, 283

Heartbeat, 96, 261, 283

High availability, 260

Homogenization, 340

Horizontal scalability, 6, 155

Hot pool, 97, 263

Hybrid

application functions, 320

backend, 317

backup, 314

cloud, 75

data, 311

development environment, 326

multimedia web application, 323

processing, 308

user interface, 304

Hypervisor, 101

type 1, 101

type 2, 101

I
IaaS. See Infrastructure as a Service (IaaS)
Idempotent semantic, 198

Inconsistency detection, 198

Inconsistent view, 292

Infrastructure as a Service (IaaS), 45

Integration, 75, 234

Isolated state, 6

Isolation, 125

access, 208

data volume, 208

performance, 208

IT resources, 3

K
Key-value storage, 119

L
Lane, 266

Law, 217, 218

Layer, 161

Lazy loading, 274

Load balancer, 11, 254

Loose coupling, 7, 156

M
Managed configuration, 247

Management processes, 240, 264

elasticity, 267

feature flag, 271

resiliency, 283

standby pooling, 279

update transition, 275

MAPE, 270

Map reduce, 106

Mean time between failures (MTBF), 97

Mean time to recovery (MTTR), 97

Measured service, 4

Message, 136

duplicity, 141, 142

event, 264

filter, 199

queue, 137

sequence, 138

start event, 264

Message mover, 225

Message-oriented middleware, 136

Middleware, 43, 49, 104

Middleware version, 275

MTBF. See Mean time between failures

(MTBF)

MTTR. See Mean time to recovery (MTTR)

Multi-component image, 206

Multimedia, 323

Multi-tenancy, 208, 345

N
Networking, 132

Network partition, 83, 123, 127

NIST, 3

Node-based availability, 95

None start event, 264

NoSQL, 121

O
Obfuscation, 222

Offering, 3

communication, 131

processing, 100

storage, 109

Once-in-a-lifetime workload, 33

On-demand, 4

Operating system, 43, 49

Operational expenditures (OPEX), 4, 23

Outsourced private cloud, 66

Overprovisioning, 24

Index 365

P
PaaS. See Platform as a Service (PaaS)

Parallel gateway, 266

Paravirtualization, 102

Partitioning tolerance, 194

Pass-through properties, 334

Pattern, 9, 10

Pay-per-use, 4, 336

Performance isolation, 208

Periodic workload, 29

Pipes-and-filters, 138, 162, 182, 183

Platform as a Service (PaaS), 49

Polling, 248

Pool, 266

Portal, 177

Portlets, 177

Predicted workload, 24

Presentation tier, 291

Privacy, 66

Private cloud, 66

Processing

component, 180

timeout-based, 204

transaction-based, 201

Production, 329

Progress bar, 195

Propagation of properties

upward, 336

Propagation of requirements

downward, 335

Properties

compensable, 333

pass-through, 334

upwards-propagation, 336

Provider adapter, 243

Provision, 4

Provisioning

over, 24

under, 24

Proxy, 228

Public cloud, 62

Pub-sub, 137

Pushing, 248

Q
Queue, 137, 257

R
Rapid elasticity, 5, 337

Regulation, 217, 218

Relational database, 115

Replica, 123, 126

Requirements, downward propagation, 335

Resiliency, 11, 275, 283

Resource pool(ing), 4

REST, 172, 174

Restricted data access, 222

Robust, 161

Router, 132, 133

Row-based tenant isolation, 215

S
SaaS. See Software as a Service (SaaS)
SAN. See Storage area network (SAN)

Scalability, 6

horizontal, 6, 155

Scaling

elastic, 25

horizontal, 6

out, 6, 106, 250, 254, 257

static, 24

up, 6

vertical, 6

Scatter–gather, 108

Security, 66

Security regulations, 66

Self-

configuration, 269

healing, 269

management, 269

service, 4

Sequence flow, 265

Service level agreements (SLA), 56

Session state, 6, 172

Shared component, 210

Shrinking workload, 40

SLA. See Service level agreements (SLA)

Software as a Service (SaaS), 55

Spill-over, 76

Staging, 329

Standby, 279

list, 279

Start event

message, 264

none, 264

timer, 264

State

application, 6, 172

session, 6, 172

Stateful, 6, 168

Stateful component, 168

366 Index

Stateless, 6, 166, 171, 190

Stateless component, 171,

Static scaling, 24

Static workload, 26

Storage

blob, 112

block, 110

key-value, 119

Storage area network (SAN), 313

Strict consistency, 123

Sub-process, 265

collapsed, 265

Summarization, 195

Switch, 133

Synchronous communication, 175, 236

T
Table-based tenant isolation, 215

Tenant-isolated component, 214

Tenant isolation, 208

row-based, 215

table-based, 215

Tier, 161

business logic, 291, 295

data, 291, 295

presentation, 291, 294

Tight coupling, 136

Timeout-based delivery, 149

Timeout-based message processor, 204

Timer, 264

Time-slot, 279

Traffic light, 195

Transaction, 124, 125

Transaction-based delivery, 146

Transaction-based processor, 201

Trust, 66

U
Underprovisioning, 24

Unpredictable workload, 36

Update, 275

transition, 275

Upwards-propagation of properties, 335

User interface, 175

Utilization, 23, 267

continuously changing, 40

equal, 26

grow, 40

once-in-a-lifetime, 33

peak, 29

periodic, 29

shrink, 40

static, 26

unpredictable, 36

V
Version, 275

application component, 275

middleware, 275

update, 240

Vertical scaling, 6

Virtualization, 102

para-, 102

Virtual local area networks (VLAN), 132, 133

Virtual networking, 132

Virtual private cloud, 66, 69

Virtual private networks (VPN), 68, 132, 134

Visibility

timeout, 149, 204

window, 149, 204

VLAN. See Virtual local area networks
(VLAN)

VPN. See Virtual private networks (VPN)

W
Watchdog, 260

Web role, 184

Worker role, 184

Workload, 3, 5, 23

continuously changing, 40

experienced, 24

growing, 40

once-in-a-lifetime, 33

periodic, 29

predicted, 24

shrinking, 40

static, 26

unpredictable, 36

Index 367

	Foreword by Gregor Hohpe
	Foreword by Robert Hanmer
	Preface
	What You Will Learn and What This Book Is About and Not About

	Trademarks
	Acknowledgments
	Contents
	List of Figures
	1: Introduction
	1.1 Essential Cloud Computing Properties
	1.2 Essential Cloud Application Properties
	1.3 Use of Patterns for Cloud Computing
	1.4 Pattern Format Used in This Book
	1.5 Overview of This Book
	1.6 How to Read This Book

	2: Cloud Computing Fundamentals
	2.1 Overview of Fundamental Cloud Computing Patterns
	2.2 Application Workloads
	2.2.1 Static Workload
	2.2.2 Periodic Workload
	2.2.3 Once-in-a-Lifetime Workload
	2.2.4 Unpredictable Workload
	2.2.5 Continuously Changing Workload

	2.3 Cloud Service Models
	2.3.1 Infrastructure as a Service (IaaS)
	2.3.2 Platform as a Service (PaaS)
	2.3.3 Software as a Service (SaaS)

	2.4 Cloud Deployment Models
	2.4.1 Public Cloud
	2.4.2 Private Cloud
	2.4.3 Community Cloud
	2.4.4 Hybrid Cloud

	3: Cloud Offering Patterns
	3.1 Overview of Cloud Offering Patterns
	3.2 Impact of Cloud Computing Properties on Offering Behavior
	3.3 Cloud Environments
	3.3.1 Elastic Infrastructure
	3.3.2 Elastic Platform
	3.3.3 Node-Based Availability
	3.3.4 Environment-Based Availability

	3.4 Processing Offerings
	3.4.1 Hypervisor
	3.4.2 Execution Environment
	3.4.3 Map Reduce

	3.5 Storage Offerings
	3.5.1 Block Storage
	3.5.2 Blob Storage
	3.5.3 Relational Database
	3.5.4 Key-Value Storage
	3.5.5 Strict Consistency
	3.5.6 Eventual Consistency

	3.6 Communication Offerings
	3.6.1 Virtual Networking
	3.6.2 Message-Oriented Middleware
	3.6.3 Exactly-Once Delivery
	3.6.4 At-Least-Once Delivery
	3.6.5 Transaction-Based Delivery
	3.6.6 Timeout-Based Delivery

	4: Cloud Application Architecture Patterns
	4.1 Overview of Cloud Application Architecture Patterns
	4.2 Fundamental Cloud Architectures
	4.2.1 Loose Coupling
	4.2.2 Distributed Application

	4.3 Cloud Application Components
	4.3.1 Stateful Component
	4.3.2 Stateless Component
	4.3.3 User Interface Component
	4.3.4 Processing Component
	4.3.5 Batch Processing Component
	4.3.6 Data Access Component
	4.3.7 Data Abstractor
	4.3.8 Idempotent Processor
	4.3.9 Transaction-Based Processor
	4.3.10 Timeout-Based Message Processor
	4.3.11 Multi-Component Image

	4.4 Multi-Tenancy
	4.4.1 Shared Component
	4.4.2 Tenant-Isolated Component
	4.4.3 Dedicated Component

	4.5 Cloud Integration
	4.5.1 Restricted Data Access Component
	4.5.2 Message Mover
	4.5.3 Application Component Proxyapplication componentsee component
	4.5.4 Compliant Data Replication
	4.5.5 Integration Provider

	5: Cloud Application Management Patterns
	5.1 Overview of Application Management Patterns
	5.2 Management Components
	5.2.1 Provider Adapter
	5.2.2 Managed Configuration
	5.2.3 Elasticity Manager
	5.2.4 Elastic Load Balancer
	5.2.5 Elastic Queue
	5.2.6 Watchdog

	5.3 Management Processes
	5.3.1 Elasticity Management Process
	5.3.2 Feature Flag Management Process
	5.3.3 Update Transition Process
	5.3.4 Standby Pooling Process
	5.3.5 Resiliency Management Process

	6: Composite Cloud Application Patterns
	6.1 Overview of Cloud Application Patterns
	6.2 Native Cloud Applications
	6.2.1 Two-Tier Cloud Application
	6.2.2 Three-Tier Cloud Application
	6.2.3 Content Distribution Network

	6.3 Hybrid Cloud Applications
	6.3.1 Hybrid User Interface
	6.3.2 Hybrid Processing
	6.3.3 Hybrid Data
	6.3.4 Hybrid Backup
	6.3.5 Hybrid Backend
	6.3.6 Hybrid Application Functions
	6.3.7 Hybrid Multimedia Web Application
	6.3.8 Hybrid Development Environment

	7: Impact of Cloud Computing Properties
	7.1 Cloud Computing Properties on Levels of the Application Stack
	7.1.1 Downwards-Propagation of Requirements
	7.1.2 Upwards-Propagation of Properties
	7.1.3 Meet-in-the-Middle for Cloud Properties and Requirements

	7.2 Impact of Core Cloud Properties
	7.2.1 Pay-Per-Use
	7.2.2 Rapid Elasticity
	7.2.3 Homogenization
	7.2.4 Resource Sharing/Multi-Tenancy

	7.3 Impact of Other Common Cloud Offering Properties
	7.3.1 Environment-Based Availability
	7.3.2 Eventual Consistency
	7.3.3 At-Least-Once Messaging

	References
	Index

